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ABSTRACT 

	

	

Human	burnt	remains	represent	a	tremendous	challenge	for	bioanthropologists.	

In	 the	 case	 of	 skeletons,	 due	 to	 the	 extensive	 and	 chaotic	 transformations	 bones	 and	

teeth	 undergo	 throughout	 heat-transfer,	methods	 for	 estimating	 the	 biological	 profile	

are	 biased,	 if	 applicable.	 Two	 particularly	 problematic	 heat-induced	 changes	 that	

undermine	trust	in	traditional	osteometric	methods	are	skeletal	shrinking	and	warping.	

In	the	present	framework	these	two	observable	occurrences	have	been	reinterpreted	as	

size	and	shape	changes,	respectively.	Despite	seeming	a	quite	simple	intuition,	it	allows	

theoretical	 reformulation	 of	 the	 problem	 at	 hand.	 Bearing	 in	 mind	 that	 quantitative	

estimation,	 interpretation	and	comparison	of	size	and	shape	 in	anatomical	entities	are	

issues	that	have	already	been	solved	by	the	Geometric	Morphometrics	Synthesis.	

For	 this	 analysis,	 partial	 skeletons	 were	 subjected	 to	 a	 controlled	 heating	

experiment	(700-1050°C	Max.	Temperature).	From	these,	a	sample	of	38	tridimensional	

landmark	configurations	representing	19	identified	humeri	before	and	after	the	heating	

experiment	 was	 obtained.	 These	 have	 been	 aligned	 with	 Procrustes	 superimposition.	

Consequently,	techniques	from	the	theory	of	statistical	shape	analysis,	such	as	Principal	

Components	Analysis	and	Thin-Plate	Splines	 Interpolations	were	deployed	 in	order	 to	

access	information	related	to	shape	and	size	changes	by	heat.	Then,	this	approach	was	

combined	with	statistical	modeling	through	regression	and	classification	algorithms	 in	

order	to	allow	estimations	of	shape	from	non-shape	variables	and	vice-versa.	

It	 was	 demonstrated	 that	 combining	 Geometric	 Morphometrics	 and	 Machine	

Learning	 is	 a	 very	 promising	 route	 for	 shape	 analysis	 of	 heat-altered	 osteological	

material.	By	applying	Logistic	Model	Trees	on	 the	Relative	Warps	of	Procrustes	Shape	

coordinates,	 the	 maximum	 temperature	 at	 which	 a	 given	 humerus	 was	 burnt	 was	

predicted	with	an	overall	accuracy	of	84.21%.		Multivariate	regression	in	the	context	of	

Procrustes	 ANOVA	 also	 shows	 promise	 to	 estimate	 bone	 shape	 by	 using	 only	 a	 few	

variables.	However,	 caution	 should	be	 taken	with	 the	provided	 results:	 sample	 size	 is	

quite	small,	and	a	comprehensive	validation	is	yet	to	be	done.	

	

	
Keywords:	burnt	remains,	retrodeformation,	warping,	shrinking,	shape	analysis	 	
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RESUMO 

	

	 	
Ao	 longo	 da	 carreira	 de	 um	 bioantrolólogo	 é	 altamente	 provável	 que	 este	 se	

depare	com	restos	humanos	queimados.	Contudo,	devido	às	complexas	transformações	

que	a	transferência	de	calor	provoca	nos	ossos	e	dentes,	os	métodos	para	estimativa	do	

perfil	 biológico,	 caso	 aplicáveis,	 tendem	 a	 ser	 enviesados.	 O	 encolhimento	 e	

arqueamento	 ósseos	 induzidos	 pelo	 calor	 são	 dos	 principais	 obstáculos	 ao	 uso	 dos	

métodos	osteométricos	 tradicionais.	Estes	dois	 fenómenos	 foram	aqui	 reinterpretados	

como	sendo	modificações	de	tamanho	e	forma,	respectivamente.	Apesar	desta	intuição	

parecer	simplista,	permite	uma	reformulação	teórica	do	problema	presente.	Visto	que	a	

análise	quantitativa	e	comparativa	do	tamanho	e	da	forma	em	entidades	anatómicas	são	

questões	já	resolvidas	pela	Síntese	da	Morfometria	Geométrica.	

Para	 esta	 análise,	 vários	 esqueletos	 parciais	 foram	 aquecidos	 sob	 condições	

laboratoriais	(700-1500ºC	máx.).	Através	de	uma	amostra	de	19	úmeros,	obtiveram-se	

conjuntos	 de	 coordenadas	 anatómicas	 pré	 e	 pós-queima	 (n	 =	 38	 modelos	 virtuais).	

Procedeu-se	a	um	alinhamento	destes	através	da	superimposição	de	Procrustes.	Outros	

métodos	como	a	análise	de	componentes	principais	e	algoritmos	de	interpolação	foram	

também	utilizados,	em	conjunto	com	modelos	de	classificação	e	regressão	com	o	intuito	

de	estimar	a	forma	a	partir	de	outras	variáveis	e	vice-versa.	

Demonstrou-se	 que	 combinar	 as	 ferramentas	 da	 morfometria	 geométrica	 com	

métodos	 computacionais	 de	 aprendizagem	 automatizada	 traduz-se	 numa	 abordagem	

promissora		para	a	análise	da	forma	em	material	osteológico	termicamente	alterado.	Ao	

aplicar	 um	 Logistic	 Model	 Trees	 em	 componentes	 principais	 das	 coordenadas	 de	

Procrustes,	obteve-se	um	modelo	capaz	de	prever	a	temperatura	máxima	da	queima	do	

osso	 com	 uma	 exatidão	 de	 84.21%.	 Também	 se	 utilizaram	 	 técnicas	 de	 regressão	

multivariada	a	partir	de	uma	ANOVA	de	Procrustes,	o	que	pode	vir	a	ter	algum	potencial	

para	 estimar	 a	 forma	 a	 partir	 de	 um	 pequeno	 conjunto	 de	 variáveis.	 Contudo,	 é	

necessário	avaliar	com	precaução	os	resultados	obtidos,	visto	que	o	tamanho	da	amostra	

ainda	é	reduzido	e	não	foi	possível	proceder	a	uma	validação	dos	resultados.	

	

Palavras-chaves:	 ossos	 queimados,	 retrodeformação,	 arqueamento,	 encolhimento,	
análise	da	forma	 	
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1 INTRODUCTION 

	

1.1 MOTIVATION AND AIMS 

	

“Insofar	as	here	the	element	required	to	heat	the	machine	seems	to	be	the	same	

element	as	is	to	be	investigated	by	means	of	the	machine”	

—	(Nietzsche,	[1878–1880]	1996:	321)	

	

Forensic	 anthropologists	 attempt	 to	 narrow	 down	 the	 missing	 person	 list	 by	

tracing	biological	profiles	of	skeletons	from	a	plethora	of	complex	contexts	(Dirkmaat	et	

al.,	 2008).	 In	 order	 to	 accomplish	 such	 endeavor,	 the	 current	 paradigm	 focus	 on	

estimation	of	 age-at-death	 (Cunha	et	 al.,	 2009),	 sex	 (Bruzek	&	Murail,	 2006),	 ancestry	

(Navega	et	al.,	2014)	and	stature	(Willey,	2014).	All	these	share	the	fact	that	they	can	be	

assessed,	 within	 some	 expected	 error,	 through	 osteometric	 or	morphoscopic	 aspects.	

However,	 when	 bones	 or	 teeth	 have	 been	 in	 contact	 with	 heat	 at	 high	 temperatures	

during	some	period	of	 time,	morphology	might	become	severely	deformed	(Randolph-

Quinney,	2014a,b).	Therefore,	morphometric-based	methods	created	through	reference	

collections	 of	 unburnt	 bones	 are	 compromised	 for	 heat-altered	 skeletal	 material	

(Fairgrieve,	2007;	Gonçalves	et	al.,	2013).	

Currently,	 partial	 skeletons	 are	 being	 subjected	 to	 high	 temperatures	 and	 then	

curated	within	the	21st	Century	Identified	Skeletal	Collection	housed	at	the	University	of	

Coimbra	(Ferreira	et	al.,	2014).	Benefiting	from	such	experimental	setting,	a	theoretical	

leverage	 for	 developing	new	 robust	methodologies	 in	 heat-altered	osteology	 is	within	

grasp.	 In	order	 to	accomplish	 that,	privileged	access	 to	data	on	pre-burning	and	post-

burning	 circumstances	 has	 to	 be	 transformed	 into	 useful	 models	 with	 the	 ability	 to	

estimate	conditions	that	the	anthropologist	cannot	accurately	guess	in	the	field,	such	as	

maximum	 temperature	 or	 even	 original	 shape	 of	 the	 heat-altered	 bone.	 By	 training	

Machine	Learning	(ML)	models	with	morphological	and	contextual	data	attained	before,	

during	and	after	the	heating	experiment,	the	aim	is	to	directly	address	the	current	bias	

in	osteometric	estimations	provoked	by	the	quite	complex	and	seemingly	chaotic	heat-

induced	changes	in	shape	and	size.		
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For	 doing	 so,	 a	 logic	 and	 cohesive	 scheme	 of	 specific	 objectives	 have	 been	

integrated,	and	can	be	summarized	as	follows:	

	

1. To	digitally	curate	3D	meshes	of	the	sampled	osteological	material	

a. Before	these	are	thermally	modified	(since	these	will	be	altered	forever);	

b. After	these	are	thermally	modified	(because	of	its	fragile	and	brittle	state);	

c. Create	an	accessible	virtual	database	of	comparable	material.	

2. Understand	the	potential	of	3D	Geometric	Morphometrics	to	

a. Compare	visually	and	statistically,	how	heat	changes	bones;	

b. Recreate	the	bone	original	form	(i.e.	virtual	retrodeformation);	

c. Measure	objectively	the	warping	phenomenon;	

d. Quantify	differences	in	size,	and	so,	measure	shrinkage	objectively.	

3. Perform	data	analysis	to	access	

a. If	the	experimental	design	strategy	is	undergoing	a	proper	direction;	

b. The	ability	to	create	new	predictive	models	to	estimate	

i. Non-shape	variables	from	shape-variables;	

ii. Shape	variables	from	non-shape	variables.	

	

It	 is	 expected	 that	 if	 accomplished	 together,	 our	 goals	 might	 promote	 new	

solutions	to	target	the	problem	of	not	being	able	to	know	or	correctly	estimate	the	form	

a	bone	had	previously	to	being	burned.	That	is	indeed	the	hidden	element	one	wishes	to	

investigate	and	that	can	only	be	retrieved	through	duteous	data	collection	in	controlled	

experimentation.	Auspiciously,	not	only	was	that	condition	fully	met,	but	also	ended	up	

droving	all	the	analytical	components	of	the	current	dissertation.	

Heretofore,	 was	 Nietzsche	 ([1878–1880]	 1996)	 envisioning	 something	 akin	 to	

ML	when	reflecting	on	the	Duty	for	Truth	problematic?	Maybe,	or	the	similarity	is	purely	

coincidental,	 as	 he	was	 abstracting	 a	 conceptual	mind	 and	 its	 respective	 obligation	 to	

search	for	reason.	That	is	pretty	much	what	scientists	working	in	Artificial	Intelligence	

are	aspiring	to	accomplish.	Nonetheless,	his	aphorism	strikingly	applies:	Insofar	as	here	

the	 unaltered	 and	 heat-altered	 shapes	 are	 required	 to	 be	 fed	 into	 a	 pattern	 recognition	

algorithm	 as	 to	 understand	 morphological	 heat-alterations	 by	 means	 of	 the	 trained	

algorithm.	 Major	 difference	 being	 that	 heat	 is	 now	 being	 used	 literally	 instead	 of	

figuratively,	as	understanding	its	effects	on	skeletons	are	what	drive	this	dissertation.	
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1.2 HEAT-INDUCED SKELETAL CHANGES: STATE-OF-THE-ART 

	

“Of	course	first-hand	experimentation,	when	feasible,	is	the	perfect	answer	to	the	

question,	How	did	this	happen?”		

—	(DeHaan,	2015:	14)	

	

Across	 the	various	phases	of	 the	heating	process,	 bones	 get	 severely	 altered	 in	

many	 morphological	 and	 structural	 aspects.	 These	 include	 fragmentation,	 chromatic	

modification,	weight	loss,	fracturing,	and	size	and	shape	deformations	(Ubelaker,	2009;	

Randolph-Quinney,	 2014b).	 Taken	 together,	 these	 might	 be	 helpful	 for	 forensic	

reconstruction	 of	 the	 circumstances	 related	 to	 the	 fire	 event,	 cremation	 or	 heating	

experiment	 (McKinley,	 2000).	 For	 example,	 macroscopic	 appearance	 of	 the	 various	

colors	that	can	show	up	in	osteological	material	have	been	regarded	as	clues	of	a	bone’s	

biochemical	 conditions	 and	 the	 environmental	 context	 associated	 with	 a	 specific	

burning	process	(Shipman	et	al.,	1984;	Mayne-Correia,	1997).	

Likewise,	 heat-induced	 fractures	 have	 been	 studied	 extensively,	 particularly	

thumbnail	fractures.	The	last	have	been	associated	with	gradual	exposition	of	wet	bone	

surface	 during	 heating	 as	 the	 protective	 tissue	 contracts	 (Symes	 et	 al.,	 2013,	 2015).	

However,	this	fails	to	explain	why	thumbnail	fractures	appear	in	dry	bones	(Gonçalves	

et	al.,	2014).	As	an	alternative	explanation	Gonçalves	et	al.	(2011)	suggested	thumbnail	

fractures	can	be	associated	with	collagen	preservation.	Other	 fractures	have	also	been	

linked	 to	 pre-burning	 osteological	 conditions,	 and	 a	 concise	 but	 thorough	 review	 is	

available	by	Gonçalves	(2012).	

Unfortunately,	the	just	described	aspects	of	heat-induced	changes,	such	as	color	

changes	and	fractures,	cannot	be,	at	least	in	any	clear	way,	analytically	studied	with	the	

chosen	theoretical	approach.	In	this	research,	a	macromorphologic	approach	based	on	a	

systematic	analysis	of	tridimensional	geometrical	properties	was	employed.	Thus,	only	

heat-induced	size	and	shape	alterations	are	focused	on	this	thesis.	

Van	 Vark	 (1974,	 1975)	 who	 was	 an	 early	 pioneer	 at	 applying	 multivariate	

statistics	to	cremated	bones	for	sex	estimation,	identifies	the	changes	that	bone	suffers	

in	size	and	shape	as	one	of	the	main	difficulties	in	applying	inferential	statistics	to	burnt	

remains.	 A	 solution	 based	 on	 Geometric	 Morphometrics	 Methods	 (GMM)	 will	 be	
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presented	in	order	to	address	this	problem.	However,	before	attempting	such	endeavor,	

one	must	‘clean	the	room’	and	address	issues	related	to	terminology.	

Despite	 many	 words	 being	 thrown	 in	 literature	 to	 describe	 shape	 and	 size	

changes	promoted	by	heat-transfer	(i.e.	twisting,	bending,	torsion,	deformation,	volume	

reduction,	dimensional	changes,	etc.),	we	will	avoid	the	confusion	here	by	splitting	any	

intrinsic	 geometric	 phenomena	 into	 two	 distinct	 types:	 warping	 and	 shrinking.	 Even	

though	 these	probably	have	 related	 causes,	we	 take	 a	 step	 further	 and	define	both	 as	

fully	independent	geometric	properties	of	heat-induced	changes	in	order	to	study	them	

quantitatively.	Thus,	for	our	purposes	we	can	define	these	as:	

	

Warping:	 all	heat-induced	shape	change	in	anatomical	structures.	

	

Shrinking:	 all	heat-induced	size	reduction	in	anatomical	structures.	

	

A	validated	theory	that	explains	the	fundamentals	of	heat-induced	bone	warping	

(Figure	1-1)	 is	yet	 to	be	 found	 (Gonçalves	et	 al.,	 2014).	Four	different	hypothesis	 that	

attempt	 to	address	 the	 fundamental	 cause	of	warping	have	been	proposed:	 (1)	due	 to	

contraction	of	muscle	fibers	(Binford,	1963);	(2)	triggered	by	heat	trapped	in	the	shaft	

hollow	 (Spennemann	 &	 Colley,	 1989);	 (3)	 anisotropic	 distribution	 of	 bone	 collagen	

results	 into	 differential	 periosteum	 contraction,	 thus	 warping	 the	 bone	 (Thompson,	

2005);	 (4)	 completes	 the	 former	 by	 adding	 that	 the	 degree	 of	 warping	 might	 be	

dependent	on	collagen-apatite	bonds	preservation	(Gonçalves	et	al.,	2011).	Notice	that	

the	 earliest	 do	 not	 address	 the	 problematic	 of	 observing	 warping	 in	 bone	 without	

protective	tissues.	The	first	ever	way	to	objectively	quantify	the	degree	of	warping	via	

simple	mathematical	procedures	will	be	demonstrated	later	on.	It	should	be	emphasized	

that	 having	 such	 variable	 might	 show	 innovative	 promise	 for	 testing	 hypotheses	 as	

those	just	mentioned.	

As	 for	 shrinking	 (Figure	 1-2),	 research	 in	 the	 90s	 have	 pushed	 forward	 robust	

methodologies	to	study	it	quantitatively	(Grupe	&	Hummel,	1991;	Nelson,	1992;	Holden	

et	al.,	1995a,b;	Huxley	&	Kósa,	1999).	However	 these	were	all	 focused	on	microscopic	

features,	rather	than	gross	structure.	While	microscopy	might	be	the	most	fruitful	way	

to	understand	the	fundamental	basis	of	bone	shrinking	(Thompson,	2009),	such	studies	

disregarded	reaching	direct	quantification	of	the	full	or	macromorphological	shrinking.		
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Figure	1-1	-	Heat-induced	warping	illustrated	with	CEI/XXI	65.	This	phenomena	can	be	described	as	a	bowing	or	
an	arching	of	the	bone	in	the	sense	that	it	deforms	the	relative	position	of	the	epiphysis	in	respect	to	the	centroid.	Left	
we	have	a	virtual	layered	comparison	of	pre-burnt	(40%	opacity)	versus	post-burnt	(80%	opacity).	In	center	we	have	
the	right	humerus	that	was	burnt	at	900°C	 for	116	minutes.	For	comparison,	 in	 the	right	we	have	the	 left	humerus	
that	was	not	burnt	of	the	same	individual.	This	bone	also	shows	evident	fractures	and	shrinking.	

	

Thus,	 it	 becomes	 a	 hard	 task	 to	 establish	 correlations,	 or	 to	 create	 predictive	

models	of	the	shrinking	phenomenon.	Some	authors	(Thompson,	2005;	Gonçalves	et	al.,	

2013)	 have	 been	 successful	 in	 estimating	 gross	 anatomical	 shrinkage,	 unfortunately	

through	 reduced	 Euclidean	 distances.	 Reduced,	 in	 the	 sense	 that	 one-dimensional	

measurements	 do	 not	 match	 the	 geometrical	 definition	 of	 size,	 even	 if	 there	 is	 a	

correlation	 among	 size	 and	 arbitrary	 lengths	 and	 widths.	 Overall,	 traditional	

morphometry	 has	 major	 statistical	 issues	 and	 theoretical	 problems	 that	 have	 been	

covered	by	 Zelditch	 et	 al.	 (2012).	 Just	 to	 give	 an	 example,	 all	measures	 in	 a	 structure	

tend	 to	 be	 highly	 correlated	 among	 them,	 meaning	 there	 are	 very	 few	 independent	

variables	despite	many	measurements.	
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Although	 it	has	been	observed	 that	 size	 alterations	 can	behave	very	differently	

(even	 presenting	 expansion	 sometimes)	 along	 the	 same	 anatomical	 entity,	 through	

measuring	 different	 metrics	 across	 the	 same	 bone	 (Thompson,	 2005),	 that	 might	 be	

possibly	due	to	using	traditional	measuring	such	as	lengths	and	widths	to	evaluate	size,	

instead	 of	 landmark-defined	 configurations.	 Since	 in	 this	 thesis,	 bone	 shrinking	 was	

defined	 as	 being	 exclusively	 related	 to	 size	 (i.e.	 shape-independent),	 any	 particular	

difference	 in	 sub-anatomic	 areas	 are	 forcefully	 shape-related	 and	 therefore	 are	

considered	 to	 be	 warping	 instead	 of	 shrinking.	 Mixing	 the	 two	 hinders	 any	 objective	

measurement	 of	 either,	 at	 least	 through	 any	 available	 mathematics	 as	 of	 today.	

Accordingly,	 non-tridimensional	 measurements	 (i.e.	 lengths,	 widths,	 ratios,	 angles,	

surface	 areas,	 etc.)	 are	 biased	 to	 address	 the	 problem	 at	 hand,	 and	 a	 full	 geometric	

approach	 is	 preferred	 to	 quantify	 size	 changes.	 Afterwards,	 such	 approach	 shall	 be	

demonstrated	as	well	through	an	elegant	mathematical	formulation.	

	

 
Figure	1-2	-	Heat-induced	shrinking	illustrated	with	CEI/XXI	35.	This	individual	was	chosen	because	it	had	the	2nd	
highest	 shrinking	 value,	 despite	 having	 relatively	 low	 warping	 (6th	 lowest	 in	 the	 sample).	 Left	 we	 have	 a	 virtual	
layered	comparison	of	pre-burnt	(40%	opacity)	and	post-burnt	(80%	opacity).	In	center	we	have	the	right	humerus	
that	was	burnt	at	900°C	for	150	minutes.	In	the	right	we	have	the	left	humerus	that	was	not	burnt	(for	comparison).	
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1.3 TERMINOLOGY OF A GEOMETRIC APPROACH: A REVIEW 

	

“What’s	in	a	name?	that	which	we	call	a	rose	

By	any	other	name	would	smell	as	sweet”	

—	(Shakespear,	[1597]	1993:	II.ii:47)	

	

Now	that	it	was	clarified	which	heat-induced	skeletal	changes	are	of	interest,	it	is	

important	to	define	terms	concerning	statistical	analysis	of	morphological	entities.	Since	

these	 have	 concrete	 mathematical	 definitions	 and	 should	 not	 be	 confused	 with	 the	

vernacular	way	in	which	most	are	thrown	around	in	day-to-day	speech.	

	

1.3.1 WHAT FORMS SHAPE AND SHAPES FORM? A MATTER OF SIZE 
	

During	the	last	30	years,	morphometricians	synthetized	powerful	analytical	tools	

from	non-Euclidean	Geometry,	Matrix	Algebra	 and	Multivariate	 Statistics	 into	 a	 single	

framework	 and	 that	 would	 not	 be	 possible	 with	 ill-defined	 terminology.	 Most	 of	 the	

following	 definitions	 are	 crucial	 for	 understanding	 GMM	 and	 were	 adapted	 from	 the	

masterworks	of	Dryden	&	Mardia	(1998)	and	Zelditch	et	al.	(2012).	

	

Geometric	Morphometrics:	an	algebraic	approach	that	transforms	problems	from	

morphology	into	problems	of	geometry,	allowing	for	a	toolbox	of	analytical	tools	

to	be	applicable	onto	anatomical	landmarks.	

	

Landmark:	 a	point	of	correspondence	on	each	entity	 that	matches	between	and	

within	populations	(e.g.	the	Nasion	in	crania).	

	

Shape:	all	 the	 geometric	 information	 remaining	 in	 a	 set	 of	 landmarks	 after	

differences	in	location,	scale	and	rotational	effects	are	removed.	

	

Size:	Any	positive	real	valued	function	g(X),	such	that	g(AX)	=	Ag(X),	where	X	is	a	

matrix	of	points	and	A	is	any	positive,	real	scalar	value.	The	size	measure	or	the	A	

favored	in	GMM	is	Centroid	Size	(see	definition	below).	
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Form:	 all	 the	 geometric	 information	 remaining	 in	 a	 set	 of	 landmarks	 after	

differences	in	location	and	rotational	effects	are	removed.	Thus,	form	is	similar	to	

shape,	except	 that	 it	preserves	scale.	Form	 is	also	been	referred	 to	as	 size-and-

shape,	since	it	is	a	combination	of	both	concepts.	

	

Centroid	Size:	A	measure	of	geometric	scale,	calculated	as	the	square	root	of	the	

summed	squared	distances	of	each	landmark	from	the	centroid	of	the	landmark	

configuration.	 It	 is	 favored	 as	 a	 size	 measure,	 because	 it	 is	 uncorrelated	 with	

shape	 in	 the	 absence	 of	 allometry,	 and	 also	 because	 Centroid	 Size	 (CS)	 is	

congruent	 with	 the	 definition	 of	 Procrustes	 distance	 (see	 below).	 For	 a	 given	

matrix	X,	the	Centroid	Size	is	acquired	by	

	

	

!" ! = X!" − C!
!

!

!!!

!

!!!
	

	

(1)	

	

where	the	sum	is	over	the	rows	i	and	columns	j	of	the	matrix	X.	Thus,	Xij	specifies	

the	component	located	on	the	ith	row	and	jth	column	of	the	matrix	X	and	Cj	stands	

for	the	location	of	the	 jth	value	of	the	centroid.	This	formula	is	generalized	for	p	

landmarks	on	k	dimensions.	

	

Procrustes	distance	 (ρ):	 is	 the	sum	of	squared	distances	between	corresponding	

points	 of	 two	 superimposed	 shapes.	 When	 the	 shape	 being	 superimposed	 is	

reduced	 in	Centroid	 Size	 to	minimize	 further	 the	difference	between	 it	 and	 the	

target,	the	distance	may	be	called	a	Full	Procrustes	distance	(dF).	When	both	sizes	

are	 held	 at	 centroid	 size	 =	 1,	 the	 distance	 may	 be	 called	 a	 Partial	 Procrustes	

distance	(dp).		Depending	on	the	anteceding	algebraic	transformations,	any	of	the	

presented	 Procrustes	 distances	 types	 between	 two	 individuals	A	 and	B	 can	 be	

mathematically	defined	as	
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!(!,!) = A!" − B!"
!

!

!!!

!

!!!
	

	

(2)	

where	the	sum	is	over	the	squared	result	of	subtracting	rows	i	and	columns	j	of	

the	matrix	A	 to	 the	 analogous	 i	 and	 j	 of	matrix	B.	Hence,	Aij	 and	Bij	 specify	 the	

component	located	on	the	 ith	row	and	 jth	column	of	the	A	and	B	matrices.	These	

sums	are	generalized	for	p	landmarks	on	k	dimensions.	

	

1.3.2 LANDMARKS: MAPPING ANATOMY THROUGH GEOMETRY 
	

Knowing	which	 landmarks	 should	 be	 documented	 in	 any	 anatomical	 structure	

depends	on	the	hypothesis	being	tested	or	the	general	objectives	of	a	study.	Selecting	a	

coherent	configuration	of	anatomical	points	is	perhaps	the	single	most	important	step	in	

any	shape	analysis.	Thus	it	is	useful	to	understand	the	difference	between	types	(Figure	

1-3)	as	well	 as	 their	 statistical	proprieties	and	assumptions	 (Dryden	&	Mardia,	1998).	

Within	GMM	there	are	3	classic	types	of	landmarks,	here	we	adapt	definitions	provided	

in	the	Glossary	of	Zelditch	et	al.	(2012)	and	originally	settled	by	Bookstein	(1997a,b).	

	

Type	1	landmarks:	Defined	 in	 terms	of	 local	 information,	such	as	 the	 junction	of	

three	bones	or	two	bones	and	a	muscle.	With	Type	1	there	is	no	need	to	refer	to	

any	distant	structures	or	relative	positions.	

	

Type	2	landmarks:	Defined	by	a	relatively	local	property,	such	as	the	maximum	or	

minimum	 of	 curvature	 of	 a	 small	 bulge	 or	 at	 the	 endpoint	 of	 a	 structure.	 It	 is	

considered	 less	 useful	 than	 Type	 1	 landmarks	 because	 the	 evidence	 for	 their	

homology	is	possibly	geometric	rather	than	biological.	

	

Type	3	 landmarks:	 Regarded	 as	 deficient	 because	 they	 have	 one	 less	 degree	 of	

freedom	than	they	have	coordinates,	which	is	lost	when	specifying	how	to	locate	

the	landmark.	These	can	be	used	in	a	statistical	shape	analysis,	but	the	loss	of	a	

degree	of	freedom	must	be	taken	into	account	when	performing	inferential	tests.	
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Figure	1-3	-	Main	types	of	landmarks	illustrated	with	the	distal	part	of	CEI/XXI	26	right	humerus	(before	heating	
experiment).	Examples	are:	the	proximal	anterior	point	of	the	medial	trochlea	(Type	1);	the	most	projecting	point	of	
the	 medial	 epicondyle	 (Type	 2);	 Middle	 curvature	 point	 of	 the	 medial	 trochlea	 (Type	 3).	 There	 are	 also	 10	
semilandmarks	defining	the	curvature	of	the	lateral	trochlea	(yellow	arrow	represents	their	order	within	the	shape	
matrix).	A	descriptive	list	of	selected	landmarks	for	my	data	analysis	can	be	found	at	Appendix	6.1.	

	

It	is	also	important	to	describe	here	two	additional	types	of	landmarks.	It	might	

seem	 at	 first	 that	 these	 are	 avoiding	 the	 logic	 of	 well-defined	 biological	 homology.	

However	 their	 intent	 is	 roughly	 the	 same	 and	 their	 usefulness	 comes	 from	 the	

innovative	possibilities	 they	offer.	 First,	 semilandmarks	are	defined,	which	are	known	

for	 having	 many	 diverse	 and	 interesting	 applications	 and	 achieved	 popularity	 and	

drastic	 theoretical	 improvements	 during	 the	 last	 years	 (Gunz	 &	 Mitteroecker,	 2013).	

Next,	a	description	of	pseudolandmarks	is	provided,	following	Boyer	et	al.	(2015).	With	

pseudolandmarks,	 the	 ‘homology’	 is	 definitely	 geometric	 in	 its	 essence,	 but	 they	 are	

particularly	 important	 for	 employing	 automated	 landmark	 acquisition	 techniques	

through	computational	means	(Coelho	et	al.,	2015):	

	

Semilandmarks:	Used	to	 integrate	 information	about	curvature,	 these	are	points	

in	curves,	edges	or	surfaces,	defined	in	terms	of	relative	position	within	aforesaid	

features	(e.g.	at	90%	of	the	length	of	the	sagittal	crest).	Because	semilandmarks	

are	not	discrete	anatomical	loci	and	require	to	be	defined	through	other	features,	

they	contain	fewer	degrees	of	freedom	than	landmarks,	hence	the	“semi-”.	
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Pseudolandmarks:	 Computer-placed	 landmarks.	 All	 the	 individuals	 have	 to	 be	

defined	by	the	same	number	of	points,	as	in	observer-placed	landmarks.	Aiming	

to	provide	each	coordinate	with	a	fairly	consistent	biological	 identity	across	the	

sample,	without	human	intervention.	Their	definition	does	not	 fit	 the	criteria	of	

either	of	the	3	types	of	landmarks	(Zelditch	et	al.,	2012),	neither	semilandmarks	

(Mitteroecker	&	Gunz,	2009;	Gunz	&	Mitteroecker,	2013).	

	

	

1.4 GEOMETRIC MORPHOMETRICS MEETS BURNT REMAINS THEORY 

	

“Yet,	that	is	precisely	what	the	theory	of	shape	demands	of	us;	if	we	do	not	think	

of	the	problem	in	terms	of	whole	landmark	configurations,	we	will	be	led	to	theoretically	

invalid	solutions.”	

—	(Zelditch	et	al.,	2012:	404)	

	

As	far	as	it	has	been	inferred	from	the	research	into	literature,	GMM	were	never	

been	applied	to	study	the	shape	of	thermally	modified	skeletal	material.	Consequently,	

this	is	unmapped	territory	and	must	be	approached	prudently.	Bearing	in	mind	that	the	

initial	steps	are	only	now	being	taken,	the	first	thing	to	point	out	is	this	study	can	only	

ever	 attempt	 at	 being	 exploratory.	 However	 there	 are	 already	 some	 general	 negative	

and	 positive	 points	 from	using	 this	 approach	with	 burnt	 skeletal	 remains	 that	 can	 be	

described.	

A	cautionary	note	is	that	GMM	can	never	become	an	optimal	solution	for	solving	

all	morphological	problems	related	to	burnt	remains.	A	major	problem	of	this	approach	

is	that	when	heat-induced	bone	fragmentation	is	severe,	it	might	be	impossible	to	define	

a	sufficient	number	of	landmarks.	Unfortunately,	this	could	represent	the	majority	of	the	

scenarios	an	osteologist	has	 to	deal.	 Furthermore,	 if	 one	 includes	burnt	material	 from	

archaeological	contexts	into	consideration,	the	aforementioned	problem	increases	even	

more	 evidently	 (Whyte,	 2001).	 While	 current	 methodologies	 for	 estimating	 missing	

landmarks	 are	 quite	 robust,	 these	 clearly	 add	 some	 bias	 to	 the	 sample.	 The	 problem	

here	is	that	there	are	already	too	many	factors	increasing	statistical	noise,	and	there	is	
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no	need	to	take	the	risk	of	bringing	an	extra	one	if	it	happens	to	affect	the	majority	of	the	

sample.	

Within	the	most	important	insights	obtained	from	introducing	GMM	into	the	field	

of	 burnt	human	osteology,	 are	 the	new	ways	of	measuring	 important	 aspects	 of	 heat-

induced	 changes	 that	 have	 been	 exposed.	 First,	 that	 shape	 distances	 such	 as	 the	 Full	

Procrustes	distance	can	give	an	easily	reproducible	quantitative	estimate	of	heat-induced	

skeletal	warping.	This	is	useful	since	warping	tends	to	be	recorded	by	a	scoring	binary	

system	 (i.e.	 present	 versus	 absent,	 see	 Gonçalves	 et	 al.,	 2014)	 or	 through	 artificially	

created	 categorical	 ranks.	 Next,	 that	 by	 subtracting	 a	 reference	 Centroid	 Size	 from	 a	

bone	after	it	was	subjected	to	heat,	to	the	CS	value	of	the	same	bone	before	the	heating	

experiment,	 it	 is	 also	 possible	 to	 estimate	 the	 amount	 of	 size	 change	 a	 bone	 has	

undergone,	thus	effectively	estimating	heat-induced	skeletal	shrinking.	Even	if	the	term	

shrinkage	was	preferred	here	to	describe	the	process,	if	the	value	obtained	is	negative	it	

would	 rather	 be	 indicative	 of	 expansion,	which	 according	 to	 Thompson	 (2005)	might	

happen	as	well.	Under	the	Laws	of	Thermodynamics	it	 is	expectable	that	objects	dilate	

when	exposed	to	heat	and	thus	it	is	not	that	impressive	to	obtain	such	results	with	heat-

altered	bones.	

It	 is	 hoped	 that	 these	 intuitions	 will	 be	 incorporated	 into	 the	 field	 of	 burnt	

remains	 osteology	 and	 ultimately	 contribute	 to	 pursuing	 new	 avenues	 for	 testing	

hypothesis	that	have	remained	untestable	for	too	long,	or	were	tested	until	now	mostly	

through	very	indirect	or	subjective	metrics.	
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2 MATERIALS AND METHODS 

	

	

2.1 MATERIALS 

	

“To	find	out	what	happens	to	a	system	when	you	interfere	with	it	you	have	to	

interfere	with	it	(not	just	passively	observe	it).”	

—	(Box,	1966:	629)	

	

The	 sample	 was	 comprised	 of	 20	 individuals	 from	 the	 21st	 Century	 Identified	

Skeletal	 Collection	 (herein	 CEI/XXI,	 after	 its	 original	 name	 in	 Portuguese:	Colecção	de	

Esqueletos	 Identificados	do	Século	XXI),	which	 is	 housed	 at	 the	 Laboratory	 of	 Forensic	

Anthropology,	in	the	Life	Sciences	Department	of	the	University	of	Coimbra	(Ferreira	et	

al.,	2014).	More	precisely,	this	sample	belonged	to	a	subgroup	of	skeletons	from	within	

the	aforesaid	collection	that	were	partially	burned	under	experimental	conditions	using	

an	electric	muffle-furnace	with	thermostat	(Gonçalves	et	al.,	2015).	

	

2.1.1 CEI/XXI 
	

As	a	new	collection	it	is	remarkable	that	CEI/XXI,	as	of	now,	already	has	over	200	

complete	skeletons	of	recently	deceased	individuals.	Quite	sui	generis	in	its	composition,	

it	 is	 of	 striking	 importance	 for	 the	 current	 scene	 in	 European	 forensic	 anthropology	

(Ferreira	 et	 al.,	 2014)	 and	 shows	noteworthy	potential	 for	 providing	 insights	 into	 the	

bioanthropology	of	contemporary	populations	(Curate,	2011).	All	the	skeletons	are	from	

individuals	 inhumed	 at	 the	 Capuchos	 graveyard	 located	 in	 Santarém,	 Portugal.	 These	

were	unclaimed	by	relatives	and	thus	donated	to	the	University	of	Coimbra.	

To	understand	 the	 relevance	of	CEI/XXI	 it	 is	better	 lo	 look	at	 some	descriptive	

statistics	 and	 population	 parameters.	 Currently	 the	 collection	 is	 composed	 by	 113	

females	and	89	males,	so	a	total	n	=	204	skeletonized	individuals.	The	range	of	age-at-

death	for	females	is	38	to	100	years,	with	mean	=	81.35,	sd	=	12.447	and	median	=	84.	

Male	 individuals	 have	 died	 younger,	 as	 can	 be	 perceived	 by	 the	 min-max	 =	 [27-95[,	

mean	 =	 72.33	 and	 median	 =	 77.	 Which	 is	 an	 expected	 well-known	 worldwide	 trend	
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known	as	the	mortality	gender-gap	(Rogers	et	al.,	2010).	Also,	the	male	sample	is	more	

spread	 out	 with	 a	 standard	 deviation	 of	 17.057.	 It	 is	 thus	 a	 collection	 with	 a	 strong	

geriatric	 component	 with	 potential	 to	 bring	 insight	 into	 some	 extremely	 complicated	

issues,	such	as	age-at-death	estimation	in	adults.	Currently	there	is	not	a	precise	enough	

method	for	estimation	of	age-at-death	in	advanced	phases	of	life	(Cunha	et	al.,	2009).	

	

2.1.2 HOT PROJECT 
	

Within	the	CEI/XXI	collection	some	selected	skeletons	are	being	partially	burned	

under	laboratorial	conditions.	Consequently,	a	sub-collection	that	currently	counts	with	

20	partially	burnt	individuals	is	undergoing	development.	For	summary	description,	the	

age-at-death	in	the	current	sample	ranges	from	70	to	90	years	old	(mean	=	80.26,	sd	=	

6.31),	and	sex	representation	is	quite	balanced	(11	females	and	9	males).	It	is	also	worth	

remarking	 that	 only	 bones	 with	 bilateral	 antimeres	 are	 being	 burnt.	 Henceforth	 the	

other	 side	 is	 kept	 for	 comparison	 and	 future	 research	 (Makhoul	 et	 al.,	 2015).	 The	

general	steps	of	the	protocol	used	during	the	controlled	heating	experiment	are	briefly	

illustrated	in	Figure	2-1.	

	

 
	

Figure	2-1	-	Brief	summary	of	the	HOT	Project	Protocol.	The	aim	is	to	minimize	error,	since	many	researchers	are	
involved	 and	 to	 maximize	 preservation,	 because	 the	 burnt	 bones	 might	 be	 useful	 for	 future	 research	 (based	 on	
Makhoul	 et	 al.,	 2015).	 For	 more	 information	 the	 reader	 should	 visit	 the	 site	 of	 the	 project	 at	
http://hotresearch.wix.com/main	
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It	is	expected	that	this	collection	will	improve	the	current	state	of	knowledge	on	

heat-induced	changes	in	human	bones	and	teeth	and	also	to	upgrade	current,	or	create	

new	analytical	methods	that	could	be	useful	 for	researchers	of	burnt	skeletal	remains.	

This	 could	 promote	 methodological	 improvement	 in	 forensic	 anthropology	 of	 arson	

crimes	 (Thompson,	 2005),	 fire-related	 disasters	 (Gonçalves	 et	 al.,	 2015)	 and	

bioarchaeology	of	cremated	remains	and	funerary	rituals	(Gonçalves	et	al.,	2011).	

There	 were	 some	 drawbacks	 on	 using	 data	 from	 the	 HOT	 Project	 for	

extrapolations	 that	 could	be	 truly	useful	 in	 real-word	 forensic	 scenarios.	For	example,	

the	20	 individuals	 from	 this	dataset	were	all	buried	 for	a	minimum	of	70	months	and	

therefore	did	not	tend	to	have	any	soft	tissue	attached.	Differing	from	dealing	with	burnt	

bodies	in	a	forensic	setting,	where	not	having	soft	tissues	prior	to	burning	is	rarely	the	

case.	For	 reviews	of	 the	effects	of	heat	 in	 soft	 tissues	 check	Payne-James	et	 al.	 (2003)	

and	Saukko	&	Knight	 (2004).	Another	possible	problem	 that	was	not	being	accounted	

for	 was	 the	 position	 or	 the	 way	 a	 bone	 lies	 in	 the	 muffle	 during	 burning.	 Because	

gravitational	effects	and	the	changes	in	the	relative	position	of	the	center	of	mass	during	

the	 heating	 experiment	 might	 affect	 the	 way	 a	 bone	 deforms.	 The	 team	 is	 currently	

testing	how	influent	this	problem	is	and	hopefully	insights	will	arise	about	its	impact	in	

the	near	future	and	how	it	should	be	experimentally	controlled.	

Despite	limitations,	being	able	to	work	with	heat-altered	human	skeletons	under	

laboratorial	 conditions	 already	 represents	 considerable	 progress	 when	 compared	 to	

research	 that	 used	 instead	 faunal	 remains	 in	 their	 experimental	 designs	 (e.g.	

Spennemann	 &	 Colley,	 1989;	Whyte,	 2001;	 Thompson,	 2005;	 Munro	 et	 al.,	 2007).	 At	

least	when	considering	direct	applicability	of	the	acquired	knowledge	into	real	cases	in	

forensic	anthropology	or	bioanthropology.	

	

	

2.2 MESH ACQUISITION AND GEOMETRIC SAMPLE SIZE 

	

In	 order	 to	 apply	 GMM	 to	 any	 dataset	 of	 tridimensional	 anatomical	 structures	

there	are	usually	 three	options:	 (1)	 to	directly	obtain	Cartesian	coordinates	 through	a	

high-precision	3D	digitizer	such	as	MicroScribe;	(2)	to	use	medical	 imaging	techniques	

(e.g.	CT,	MRI,	etc.)	to	acquire	full	volumetric	information;	or	(3)	to	get	polygonal	meshes	
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of	 the	anatomy	through	surface	 laser	scanning.	For	this	dissertation,	 the	 last	approach	

was	 preferred	 and	 applied	 to	 all	 the	 humeri	 of	 the	 individuals	 in	 our	 sample.	 The	

humerus	was	selected	because	of	 its	 relevance	 in	biological	profiling,	and	also	since	 it	

displays	 quite	 representatively	 the	 range	 of	 possible	 heat-induced	 alterations	 in	 long	

bones	without	becoming	excessively	fragile.	

In	 a	 first	 phase,	 the	 humeri	of	 our	 20	 individuals	 were	 virtually	 reconstructed	

through	 NextEngine™	 3D	 Scanner	 HD	 and	 its	 associated	 software	 ScanStudio™	 HD	

(NextEngineTM,	2015).	Following,	an	open-source	3D	mesh	processing	system,	MeshLab,	

was	used	to	create	a	watertight	3D	model	(Cignoni	et	al.,	2008).	This	procedure	to	obtain	

virtual	3D	representations	of	the	humeri	was	repeated	after	the	heating	experiment.	In	a	

geometrical	sense	and	 in	 terms	of	statistical	modeling	 this	duplicated	the	 total	sample	

size	(n	=	40).	However,	one	humerus	was	not	possible	to	scan	before	heating	(individual	

CEI/XXI	77),	and	even	though	data	about	it	was	collected,	this	individual	was	not	used	

in	the	shape	statistical	analysis,	reducing	our	effective	n	to	19	(geometric	n	=	38,	since	

its	post-burning	mesh	was	also	discarded).	This	was	not	seen	as	a	major	problem,	since	

the	 individual	 77	 was	 an	 outlier	 to	 begin	 with.	 As	 it	 was	 burnt	 at	 only	 500	 degrees	

Celsius	 (i.e.	 the	 lowest	 temperature	 in	 the	 sample)	 and	 despite	 the	 striking	 dark	

coloration	and	a	31%	mass	reduction	(also	 the	 lowest,	 sample	mean	=	39.32%),	 there	

were	no	noticeable	form	deformations	in	the	humerus.	Plus,	there	was	no	evidences	of	

calcination,	in	other	words	it	has	only	undergone	carbonization.	

	

2.2.1 3D LASER SCANNING STRATEGY 
	

The	pipeline	for	tridimensional	laser	scanning	of	long	bones	was	designed,	based	

on	 suggestions	 and	 protocols	 first	 proposed	 by	 Filiault	 (2012).	 After	 many	 trials,	 a	

procedure	 that	 takes	 between	 30	 and	 45	 minutes	 to	 virtually	 render	 a	 complete	

humerus	with	high	quality	was	chosen.	It	should	be	noted	that	the	long	bones	from	the	

human	 body	 take	 considerable	 more	 time	 and	 dedication	 when	 considering	 the	

limitations	 of	 a	 NextEngineTM	 (2015).	 Because	 of	 its	 shape	 and	 size,	 multiple	 laser	

scanning	 in	 different	 positions	 is	 necessary	 in	 order	 to	 obtain	 great	 detail	 and	

successfully	 align	 the	 joint	 final	 mesh.	 When	 the	 bones	 are	 calcined,	 extra	 care	 is	
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required,	because	of	the	inherent	fragility	of	the	osteological	material	after	experimental	

heat	alterations.	

Before	 GMM	was	 thought	 to	 be	 included	 into	 the	 experimental	 protocol	 of	 the	

HOT	 Project,	 already	 9	 skeletons	 were	 subjected	 to	 partial	 burning.	 Accordingly,	 we	

would	 have	 a	 very	 small	 sample	 size,	 of	 only	 11	 individuals.	 So,	 the	 antimeres	 of	 the	

previously	burnt	humeri	were	also	3D	scanned	 for	8	of	 those	9	 skeletons.	Then,	 these	

were	virtually	mirrored,	meaning	some	left	humeri	were	transformed	into	right	humeri	

or	vice-versa,	in	order	to	maximize	our	n.	

To	perform	3D	shape	mirroring	via	computational	means,	 it	 is	necessary	to	 flip	

one	of	the	axes,	while	freezing	the	shape	matrix.	This	was	carried	out	for	individuals	24,	

29,	 32,	 49,	 50,	 57,	 64,	 65	 and	 77	 of	 the	 CEI/XXI	 collection.	 However,	 as	 already	

mentioned,	 it	was	decided	to	not	use	in	our	analysis	the	last	one	that	besides	being	an	

outlier,	 its	antimere	has	severe	 trauma	with	associated	bone	growth,	plus	 taphonomic	

erosion	 and	 thus	was	 very	 asymmetric	 (Figure	 2-2),	 which	would	 inject	 unnecessary	

bias	into	our	sample	that	would	be	hard	to	handle	statistically.	

	

 
	

Figure	2-2	-	Humeri	of	individual	CEI/XXI	77.	
The	right	humerus	(on	top)	was	burnt	at	500ºC	
for	 75	minutes.	 Having	 considered	 the	 trauma	
in	 the	 left	 humerus’	 diaphysis,	 and	 the	
taphonomic	 process	 in	 the	 lateral	 side	 of	 the	
proximal	epiphysis,	 it	was	decided	 to	not	use	a	
mirrored	 left	 humerus	 or	 even	 any	 data	 from	
this	individual	in	the	final	analysis.	

	

	

2.2.2 MESHLAB: GETTING ANATOMICAL 3D MODELS READY FOR ANALYSIS 
	

Afterwards,	 post-processing	 of	 the	 3D	 meshes	 is	 achieved	 with	 the	 help	 of	

MeshLab	 (Cignoni	 et	 al.,	 2008).	 Since	 the	 meshes	 generated	 through	 laser	 scanning	

usually	possess	excess	detail	and	noise,	holes,	and	non-manifold	vertices	and	edges,	we	

need	 to	 apply	 computational	 techniques	 such	 as	 Poisson	 Surface	 Reconstruction	

(Kazhdan	et	al.,	2006;	Kazhdan	&	Hoppe,	2013).	This	algorithm	uses	the	distribution	of	

Poisson	as	a	means	of	removing	many	unexpected	artifacts	that	might	arise	during	3D	
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laser	 scanning,	 while	 being	 quite	 effective	 at	 closing	 holes	 resulting	 from	 parts	

impossible	to	detect	by	the	laser	scanning	technology.	Thus,	an	essential	step	to	create	

watertight	tridimensional	models	(Bolitho	et	al.,	2009;	Estellers	et	al.,	2015),	which	are	

useful	for	conceiving	automated	methods	of	landmark	digitization	and	mandatory	if	one	

desires	to	properly	3D-print	any	of	the	virtual	models.	

Contemplating	 the	 lack	of	 literature	 in	how	to	generate	a	3D	virtual	anatomical	

part	ready	for	landmark	digitization,	attempts	were	made	through	trial	and	error	until	a	

protocol	 that	generated	 reproducible	 results	with	consistent	quality	was	developed.	 It	

entails	the	following	steps:	

	 	

1. Load	a	.ply	file	(obtained	from	ScanStudio™	HD)	into	MeshLab;	

2. Remove	all	non-manifold	edges	and	vertices;	

3. Apply	Quadric	Edge	Collapse	Decimation:	

a. Reduce	to	64000	faces;	

b. Check	‘preserve	normal’;	

c. Check	‘preserve	topology’.	

4. Apply	Poisson	Surface	Reconstruction	with	the	following	parameters:	

a. Octree	depth:	12;	

b. Solver	divide:	6;	

c. Samples	per	node:	1;	

d. Surface	offsetting:	1;	

5. Apply	Quadric	Edge	Collapse	Decimation	to	the	just	created	Poisson	mesh:	

a. Reduce	to	32000	faces;	

b. Check	‘preserve	normal’;	

c. Check	‘preserve	topology’.	

6. Export	the	final	mesh	into	.off	and	ASCII	.ply	formats.	

	

After	 this	 procedure,	 the	 3D	 virtual	 humeri	 are	 almost	 ready	 for	 statistical	

analysis	 through	a	 group	of	 techniques	developed	within	 the	Procrustes	paradigm	 for	

quantitative	analysis	of	shape	and	form.	However,	such	framework	requires	the	analyst	

to	 possess	 a	 data	 matrix	 with	 Cartesian	 coordinates	 of	 anatomical	 landmarks	

(Bookstein,	1997a,b;	Zelditch	et	al.,	2012).	
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2.3 R: THE STATISTICAL LANGUAGE 

	

“Non-reproducible	single	occurrences	are	of	no	significance	to	science.”	

—	(Popper,	1959:	66)	

	 	

All	 the	 statistical	 and	morphological	 analysis	was	done	with	R,	 a	 free	and	open	

source	 scientific	programming	 language	 (Claude,	2008;	R	Core	Team,	2015).	Choosing	

this	 tool	was	 proven	 to	 be	 crucial	 for	 the	 elaboration	 of	 this	 thesis.	 The	main	 factors	

influencing	the	decision	of	using	it	were:	

	

• It	is	multiplatform	and	works	in	every	Operative	System	(Windows,	Linux,	Apple	

OS,	etc.);	

• Dramatically	 reduces	 the	 use	 of	 multiple	 software	 for	 morphometric	 analysis,	

which	increases	coherence	and	reduces	compatibility	issues	(Claude,	2008);	

• Statistics	done	 through	written	 code	have	 far	bigger	 reproducibility	 than	when	

done	in	point-and-click	software	(Gandrud,	2013;	Stodden,	2015);		

• Programming	 and	 GMM	 have	 been	 going	 hand-in-hand	 nearly	 since	 the	

theoretical	 foundation	 of	 the	 discipline.	 Popular	 R	 packages	 include	 geomorph	

(Adams	 &	 Otárola-Castillo,	 2013;	 Adams	 et	 al.,	 2015),	 shapes	 (Dryden,	 2014),	

Morpho	(Schlager,	2015),	Momocs	(Bonhomme	et	al.,	2014),	among	others.	These	

have	been	created	to	facilitate	the	analysis	even	for	non-expert	users;	

• R	 has	 extremely	 flexible	 and	 powerful	 graphical	 tools	 for	 data	 visualization	

(Claude,	2008;	Chang,	2012);	

• The	 sheer	 amount	 of	 manuals,	 scientific	 and	 pop-science	 articles,	 MOOCs,	

conferences,	 workshops,	 tutorials,	 online	 forums,	 and	 an	 ever-growing	

community	of	people	ready	to	help	make	it	far	more	preferable	when	compared	

to	 other	 extremely	 specific	 software	 with	 just	 a	 handful	 of	 users	 (Horton	 &	

Kleinman,	2015).	
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2.4 LANDMARKS: THE RAW MATERIAL FOR MODERN SHAPE ANALYSIS 

	

2.4.1 AUTO3DGM: AUTOMATIC LANDMARKS IN R 
	

“This	is	very	beautiful.	It	is	neat,	it	is	modern	technology,	and	it	is	fast.	

I	am	just	wondering	very	seriously	about	the	biological	validity	of	what	we	are	

doing	with	this	machine.”		

—	Melvin	Moss	on	using	computers	for	biometrics	(in	Walker	et	al.,	1971:	326)	

	

From	 an	 historic	 point	 of	 view,	 geometric	 morphometrics	 tried	 to	 answer	

questions	with	 an	 inherent	 biological	 or	 evolutionary	 explanation	 (Benítez	&	Püschel,	

2014).	 It	 had	 been	 used	 consistently	 as	 a	 toolkit	 to	 solve	 problems	 of	 phylogeny	 and	

taxonomy,	 modularity	 and	 morphological	 integration,	 development,	 allometry,	

asymmetry,	 among	 others	 (Adams	 et	 al.,	 2013).	 With	 that	 in	 mind,	 it	 is	 not	 hard	 to	

understand	 the	 importance	 given	 in	 the	 literature	 to	 obtain	 landmarks	 that	 are	

biological	homologous	between	organisms	(Zelditch	et	al.,	2012;	Claes	et	al.,	2015).	

However,	here	we	are	not	trying	to	grasp	transformations	provoked	by	genetic	or	

developmental	 constraints,	 but	 instead	 by	 heat.	 Also,	 considering	 the	 high	 number	 of	

landmarks	 that	 are	 required	 to	 map	 the	 complex	 and	 chaotic	 characteristics	 of	 bone	

deformation	 provoked	 by	 heat,	 automatize	 landmark	 acquisition	 seemed	 to	 be	 a	

worthwhile	 option.	 A	 package	 for	R	 that	 fits	 this	 purpose	 has	 just	 recently	 come	 out,	

known	as	auto3Dgm	(Boyer	et	al.,	2015).	Straightaway	a	preliminary	study	was	done	in	

collaboration	with	colleagues,	using	3D	scanned	tali	bones	for	sex	diagnosis.	It	started	as	

a	small	project	with	 the	aim	of	 learning	and	 testing	auto3Dgm	 as	a	 tool	 for	performing	

geometric	morphometric	 analysis.	 Eventually,	 it	 led	 to	 very	 satisfactory	 results	 when	

using	Logistic	Model	Trees	over	Procrustes	shape	matrices	and	achieved	89%	accuracy	

on	sex	classification	after	10-fold	Cross-Validation	(Coelho	et	al.,	2015).		

Moreover,	the	automated	methods	proposed	by	Boyer	et	al.	(2015),	already	show	

results	as	good	or	superior	as	when	experts	in	anatomy	manually	select	the	landmarks.	

Taking	 everything	 that	 has	 been	 said	 to	 this	 point,	 it	 would	 seem	 that	 using	 the	

algorithms	provided	by	Boyer	et	al.	 (2015)	 for	automatically	acquiring	 landmarks	 in	a	

heat	deformation	problem	was	theoretically	justified.	
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However,	for	that	to	happen	substantial	numbers	of	pseudolandmarks	need	to	be	

acquired.	Consequently	 the	digitization	process	 can	become	 too	expensive	 in	 terms	of	

computational	processing	power	and	memory	and	might	be	impossible	to	run	it	in	more	

modest	or	older	workstations.	Unfortunately,	the	use	of	auto3Dgm	for	heat-altered	bones	

failed,	 which	 might	 have	 been	 caused	 by	 lack	 of	 computational	 power	 available.	 Or	

might	 be	 simply	 due	 to	 the	 chaos	 inherent	 to	 heat-deformed	 bones	 being	 just	 too	

complex	to	be	understood	and	perfectly	mapped	by	this	particular	algorithm.	

	

2.4.2 MANUAL VERSUS AUTOMATIC: A MIDDLE-WAY WINS 
	

Since	 the	 fully	 automatic	method	 of	mass-generating	 pseudolandmarks	 did	 not	

work	out,	an	alternative	had	to	be	found.	Nevertheless,	manually	defining	landmarks	has	

huge	problems:	(1)	it	is	too	prone	to	errors;	(2)	it	can	become	very	time-consuming;	(3)	

when	 a	mistake	 is	 done,	 it	might	 become	 extremely	 challenging	 to	 correct	 it	 or	 even	

identify	 it;	 (4)	you	have	 to	define	all	 landmarks	early	on,	which	needs	 to	be	done	 in	a	

theoretically	 rigorous	way.	 However	 there	 is	 a	 semi-automatic	 approach	 provided	 by	

the	software	Landmark	Editor,	where	only	the	4th	problem	applies.	With	this	approach	it	

is	mandatory	to	focus	on	defining	all	the	landmarks	prior	to	the	analysis.	However,	after	

manually	adding	them	to	a	first	individual	that	works	as	a	template	(a.k.a.	 ‘atlas’	in	the	

software’s	 terminology),	 all	 other	 individuals	 get	 these	 landmarks	 in	 a	 more-or-less	

correct	place	 that	 the	user	needs	 to	manually	verify	and	made	corrections	as	 it	 seems	

anatomically	fit,	which	solves	quite	straightforwardly	problems	1,	2	and	3.	

In	order	to	select	landmarks	that	would	make	theoretical	sense	for	my	sample,	a	

literature	 research	 for	 well-defined	 anatomical	 landmarks	 of	 the	 humerus	 was	 done.	

Chinnery	 (2004)	 illustrates	 complete	 landmark	 constellations	 of	 post-cranial	 skeletal	

elements,	 including	 the	 humerus.	 Unfortunately	 the	 study	 is	 about	 Ceratopsids	

dinosaurs,	and	while	 the	 landmarks	are	biological	homologous	among	species	 it	 is	not	

that	easy	to	translate	the	figures	into	human	osteology.	On	the	other	hand,	Holliday	and	

Friedl	 (2013)	 defined	 landmarks	 for	 hominid	humeri,	 but	 unfortunately,	with	 only	 19	

and	 a	 great	 proportion	 being	 either	 Type	 II	 or	 III	 landmarks	 it	 was	 considered	 a	

suboptimal	landmark	cluster	for	us.	There	are	two	works	by	Kranioti	et	al.	(2009)	and	

Tallman	(2013)	that	provide	a	very	good	list	of	landmarks	with	illustrative	definitions,	
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but	they	only	mapped	the	epiphyses	of	the	humerus,	and	understanding	the	changes	in	

the	 diaphysis	 is	 considered	 crucial	 for	 accomplishing	 this	 thesis’	 objectives.	 Finally,	

there	 is	 a	 recent	 paper	 by	 Rosas	 et	 al.	 (2015)	 that	 provides	 incredibly	 throughout	

definitions	for	43	landmarks	of	the	humerus.	Most	importantly,	since	Rosas	et	al.	(2015)	

had	chosen	 landmarks	robust	enough	to	deal	with	extremely	 fragmented	material	 (i.e.	

paleoanthropological	humeri	from	Atapuerca),	we	can	safely	assume	that	their	approach	

is	also	appropriate	for	shape	analysis	of	heat-deformed	bones.	

For	 addressing	 problems	 of	 dimensionality	 and	 other	 non-desirable	

mathematical	proprieties,	Type	 III	 landmarks	 from	Rosas	et	 al.	 (2015)	were	 removed.	

Likewise,	 if	 a	Type	 II	 landmark	seemed	 too	hard	 to	obtain	or	visualize	 in	a	virtual	3D	

environment,	 it	was	discarded	as	well	 in	order	 to	reduce	observer	error	by	enhancing	

reproducibility.	Ultimately	a	protocol	with	35	 landmarks	based	on	Rosas	et	 al.	 (2015)	

protocol	was	selected	to	map	all	the	humeri’s	shapes	from	our	sample	(Appendix	6.1).	

One	 last	 feature	 of	 Landmark	 Editor	 also	 worth	 mentioning	 is	 its	 ability	 to	

morphing	 an	 anatomical	 object	 into	 another,	 by	 controlling	 the	 morphing	 degree	

through	a	sidebar.	This	literally	means	we	can	either	virtually	“burn”	or	“unburn”	a	bone	

controlling	 how	 strong	 the	 effect	 of	 this	 transformation	 is	 (Figure	 2-3).	 This	 has	

potential	to	reconstruct	other	bones	warped	by	heat	even	if	these	do	not	belong	to	our	

original	sample,	as	long	as	one	correctly	assigns	the	same	landmarks	onto	them.		

	
Figure	 2-3	 -	 Retrodeformation	 as	 a	 new	 tool	 to	 visually	 understand	warping.	Here,	 the	 right	humerus	of	 the	
CEI/XXI	 5	 individual	 is	 being	 morphed	 from	 its	 unburnt	 to	 its	 fully	 burnt	 state	 (900°C	 for	 150	minutes).	 Orange	
represents	 the	original	unburnt	mesh	and	pale-blue	represents	where	 the	burnt	mesh	 is	dominant.	Notice	how	the	
pale-blue	mesh	spreads	as	the	humerus	warps.	The	morphing	was	broken	down	into	4	steps,	but	it	could	theoretically	
be	broken	into	infinite	steps.	Since	the	models	have	been	scaled	to	a	consensus	size,	only	the	effects	of	warping	are	
being	shown,	disregarding	shrinkage.	Otherwise,	the	difference	among	the	5	stages	would	be	far	more	evident.	
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2.5 GEOMORPH: INTEGRATING GEOMETRIC MORPHOMETRICS IN R 

	

After	 obtaining	 the	 landmark	 configurations	 for	 our	 dataset	 with	 the	 help	 of	

Landmark	 Editor,	 these	 are	 ready	 for	 being	 statistically	 analyzed.	 In	 R,	 the	 geomorph	

package	allows	the	execution	of	the	full	workflow	of	GMM,	even	though	we	jumped	the	

first	 step	 by	 doing	 it	 in	 Landmark	 Editor	 (an	 external	 software,	 easier	 to	 use	 for	 this	

particular	part).	The	full	workflow	of	GMM	can	be	summarized	as:	

	

1. Data	collection	(i.e.	landmark	digitizing);	

2. Data	input	(i.e.	bringing	landmark	data	into	R);	

3. Data	manipulation	(i.e.	estimating	missing	values);	

4. Generalized	Procrustes	Analysis	(Gower,	1975;	Rohlf	&	Slice,	1990);	

5. Data	exploration	and	visualization	(Klingenberg,	2013);	

6. Data	analysis	(Mitteroecker	&	Gunz,	2009).	

	

The	 two	 last	 steps	 include	 all	 the	 standard	 techniques	 of	 the	 Geometric	

Morphometrics	 toolkit,	 including	 Principal	 Component	 Analysis	 (Mitteroecker	 &	

Bookstein,	2011),	Canonical	Variates	Analysis	(Campbell	&	Atchley,	1981),	Partial	Least-

Squares	 (Rohlf	 &	 Corti,	 2000;	 Bookstein	 et	 al.,	 2003),	 Multivariate	 Regression	 and	

Procrustes	 ANOVA	 (Zelditch	 et	 al.,	 2012;	 Adams	 et	 al.,	 2013),	 Thin-Plate	 Spline	

Interpolation	 (Bookstein,	 1989;	 Green,	 1996),	 among	 others.	 For	more	 details	 on	 the	

technical	characteristics	of	the	geomorph	package	for	R,	check	Adams	&	Otárola-Castillo	

(2013)	and	Adams	et	al.		(2015).	

The	above-mentioned	methods	allow	us	 to	perform	statistical	analysis	of	shape	

variation	and	 its	 covariation	with	other	variables	 (Bookstein,	1997a).	Moreover,	Thin-

Plate	 Spline	 (TPS)	 is	 particularly	 important,	 since	 it	 can	 be	 used	 to	 deform	 a	

tridimensional	 shape	 into	 another	 (Gunz	 &	 Mitteroecker,	 2013).	 Therefore	 it	 has	

implications	 for	Objective	 no.	 2.b:	 to	 reconstruct	 the	 original	 bone	 shape,	 before	 the	

heat-induced	changes	have	occurred.	However	it	should	be	noted	that	the	way	in	which	

Landmark	 Editor	 does	 this	 is	 even	 easier,	 and	 allows	 partially	morphed	 shapes	 to	 be	

created	and	saved	(thus	3D-printable),	as	well	as	it	has	been	show	previously	in	Figure	

2-3.	
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2.6 PROCRUSTES SUPERIMPOSITION 

	

“Shape	is	all	the	geometrical	information	that	remains	when	location,	scale	and	

rotational	effects	are	filtered	out	from	an	object.”	

—	(Dryden	&	Mardia,	1998:	1)	

	

Applying	Procrustes’	algorithms	is	the	contemporary	way	to	obtain	insights	into	

morphology	 and	 extracting	 shape	 information	 (Rohlf	 &	 Slice,	 1990;	 Goodall,	 1991;	

Dryden	 &	 Mardia,	 1998;	 Zelditch	 et	 al.,	 2012).	 This	 approach	 is	 of	 such	 ubiquity	 in	

Geometric	Morphometrics	 that	 in	 a	 recent	 review	 of	 the	 state-of-the-art,	 Adams	 et	 al.	

(2013)	 dubbed	 contemporary	 approaches	 to	 statistical	 analysis	 of	 shape	 as	 the	

“Procrustes	Paradigm”.	Generalized	Procrustes	Analysis	 (GPA)	was	 first	 introduced	by	

Gower	(1975)	as	a	functional	algorithm	for	removing	the	effect	of	position,	rotation	and	

size	 in	a	set	of	multiple	 individuals	represented	by	Cartesian	coordinates	(Figure	2-4).	

By	discarding	this	information	we	obtain	a	set	of	consensus	shapes	in	which	each	is	at	

the	orientation,	location	and	scale	that	minimizes	its	distance	from	the	reference	while	

maintaining	 its	 key	 geometric	 proprieties	 in	what	 is	 called	 the	 Kendall’s	 shape	 space	

(Kendall,	1977;	Small,	1996;	Kendall	et	al.,	2009).	This	is	the	essential	algorithmic	step	

preceding	data	analysis	within	the	realm	of	GMM.	After	this	algebraic	procedure,	most	

tools	 from	 multivariate	 statistics	 become	 applicable	 to	 any	 dataset	 of	 landmark	

multidimensional	arrays	(Zelditch	et	al.,	2012;	Benítez	&	Püschel,	2014).	

	

	
Figure	 2-4	 -	 Illustration	 of	 Procrustes	 Superimposition	with	 the	CEI/XXI	 26	 individual.	Dark	 colored	humerus	
represents	the	unburnt	mesh	and	the	lighter	is	the	same	bone	after	the	heating	experiment	(900°C	for	195	minutes).	
The	GPA	can	be	broken	into	3	steps:	A)	translation,	B)	rotation	and	C)	scaling.	After	A,	B,	C	are	performed,	Procrustes	
Superimposition	 is	 achieved	among	 the	 anatomical	 structures,	meaning	 consensual	 shapes	 in	Kendall’s	 space	were	
obtained	and	thus,	these	bones	are	ready	for	shape	analysis.	
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There	 are	 two	 very	 important	 scalar	 vectors	 obtained	 from	 bringing	 our	

morphologies	into	the	Kendall’s	shape	space	that	seem	to	have	practical	correspondence	

to	 two	 critical	 concepts	 from	 burnt	 remains	 theory.	 The	 already	 mentioned	 Full	

Procrustes	 Distances	 (DF)	 and	 differences	 in	 Centroid	 Size	 (CS)	 as	 independent	

quantitative	 measurements	 of	 heat-induced	 skeletal	 warping	 and	 shrinking,	

respectively.	It	should	be	noted	that	there	are	no	references	in	the	literature,	previous	to	

the	publication	of	this	manuscript,	of	a	geometrically	definable	quantitative	analysis	of	

these	two	phenomena.	Which	together	with	fractures	and	color	alterations	represent	the	

main	spectrum	of	heat-induced	skeletal	changes	(Gonçalves	et	al.,	2014).	

A	 simpler	 and	 older	 version	 of	 GPA	 is	 Ordinary	 Procrustes	 Analysis	 (OPA).	

Instead	 of	 performing	 a	 Procrustes	 superimposition	 for	 a	 whole	 sample,	 it	 is	 only	

applicable	to	2	individuals.	The	mathematical	steps	for	performing	an	OPA	were	actually	

laid	down	by	renowned	anthropologist	Franz	Boas	(1905),	for	addressing	shortcomings	

of	 using	 standard	 anatomical	 positioning	 (e.g.	 Frankfurt	 orientation).	 Later,	 it	 was	

reformulated	 for	 allowing	 matrix	 algebra	 calculations,	 to	 answer	 questions	 in	

psychometry	 (Mosier,	 1939).	 Only	 with	 Gower	 (1975)	 does	 OPA	 gets	 generalized	

enough	to	allow	infinite	sample	size,	thus	becoming	known	as	GPA.	Afterwards,	much	of	

the	 theoretical	 work	 that	 consolidated	 Procrustes	 superimposition	 as	 an	 elegant	 and	

mathematically	 coherent	 method	 of	 statistical	 shape	 theory	 is	 due	 to	 David	 Kendall	

(1984,	1985,	1989),	who	was	initially	motivated	to	apply	superimposition	algorithms	in	

order	 to	study	shape	and	 form	characteristics	of	different	megalithic	sites	(Broadbent,	

1980;	Kendall	&	Kendall,	1980).	

For	 our	 purposes	 of	 addressing	 specific	 problems	 in	 burnt	 osteology,	 which	

includes	 estimating	 quantitatively	warping	 and	 shrinking,	we	 could	 either	 do	OPA	 for	

every	pair	of	unburt-and-burnt	individual	bone,	or	do	a	GPA	for	the	whole	sample.	The	

second	 approach	 was	 preferred	 because	 it	 is	 far	 faster	 and	 easier	 to	 implement	

nowadays,	and	also	because	 it	generates	 far	more	data.	Since	GPA	 is	performed	to	 the	

whole	sample,	it	is	possible	to	calculate	all	possible	Full	Procrustes	distances	among	our	

38	 geometric	 individuals	 in	 the	 sample	 (i.e.	 a	 total	 of	 384	Procrustes	 distances),	 even	

though	only	19	of	these	are	relevant	to	directly	estimate	warping.	However,	OPA	is	still	a	

crucial	 concept	 for	 this	 thesis,	 in	 the	 sense	 that	 it	 is	 the	 only	methodological	way	 for	

others	to	test	(with	their	own	data)	the	predictive	abilities	of	the	statistical	models	that	

have	been	designed.	Which	are	shown	later	in	Chapter	3.7.	
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2.7 THIN-PLATE SPLINE INTERPOLATION 

	

Grid	plotting	via	interpolate	functions	had	its	roots	in	a	simple,	yet	powerful	idea	

of	 using	 deformation	 grids	 as	 a	 way	 for	 illustrating	 and	 formalize	 shape	 differences	

among	 geometrical	 entities.	 This	 intuition	 dates	 back	 to	 the	 1528	 manuscript	 by	

Albrecht	Dürer	on	the	variation	of	human	proportions	(Figure	2-5).	

	

	
Figure	 2-5	 -	 A	 few	 examples	 of	 the	 first	 known	 use	 of	 deformation	 grids	 in	 anatomy.	 Vectorial	 graphics	
presented	here	were	redrawn	after	Dürer’s	([1528]	1969)	original	drawings.	

	

Later	in	1917,	D’Arcy	Thompson	revisited	the	idea	with	what	he	called	‘Cartesian	

transformations’.	 His	 insight	 was	 to	 not	 only	 use	 this	 tool	 for	 describing	 biological	

variability	 but	 also	 to	 apply	 it	 for	 interspecific	 form	 comparison	 (Figure	 2-6).	 Yet	

Thompson	([1917]	1992)	had	also	hand-drawn	his	grids,	so	these	are	actually	also	non-

Cartesian	 and	 error-prone.	 The	 one	 to	 solve	 this	 problem	 was	 Bookstein	 (1989),	 by	

implementing	an	interpolant	function	commonly	used	to	address	problems	in	material	

physics.	With	a	TPS	algorithm	it	is	possible	to	computationally	define	a	deformation	grid	

from	two	sets	of	Cartesian	coordinates.	Thus	effectively	mapping	the	differences	in	form	

between	two	anatomical	entities.	

	

 
Figure	 2-6	 -	 Cartesian	 transformations	 from	 Homo	 sapiens	 into	 Pan	 troglodytes	 and	 a	 Papio	 sp.	 vectorial	
graphics	adapted	from	Thompson’s	([1917]	1992)	classic	On	Growth	and	Form.	
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As	 a	 methodology	 TPS	 Interpolation	 serves	 3	 main	 goals	 in	 statistical	 shape	

analysis:	 (1)	 as	 it	 primary	 purpose	 it	 uses	 deformation	 grids	 as	 visualization	 tools	 of	

shape	modification	(Mitteroecker	&	Bookstein,	2011;	Klingenberg,	2013);	(2)	it	is	used	

as	well	in	dimensionality	reduction,	in	the	case	of	3D	data	specifically	from	3k	degrees	of	

freedom	into	3k-7	with	no	loss	of	information.	Obtaining	the	correct	degrees	of	freedom	

allows	 the	 use	 of	 conventional	 statistical	 tests	 without	 having	 worries	 concerning	

complicated	 mathematical	 details	 (Zelditch	 et	 al.,	 2012);	 (3)	 additionally,	 it	 enables	

superimposition	(sliding)	of	semilandmarks	(Gunz	&	Mitteroecker,	2013).	

For	this	thesis’	objectives,	the	first	point	is	perhaps	the	most	crucial.	But	even	if	

one	 was	 not	 concerned	 with	 graphical	 displays,	 TPS	 is	 useful	 since	 it	 performs	 an	

eigenanalysis	of	 the	bending	energy	matrix	 thus	obtaining	a	parsimonious	matrix	 that	

describes	 shape	 differences	 between	 a	 reference	 and	 another	 shape	 through	 partial	

warps	 scores,	 which	 can	 be	 directly	 used	 (unlike	 coordinates	 from	 GPA)	 for	

conventional	statistical	analysis,	such	as	regression	(Zelditch	et	al.,	2012).	

	
	

2.8 LOGISTIC MODEL TREES: A CLASSIFICATION ALGORITHM 

	

The	 chosen	 Machine	 Learning	 algorithm	 to	 create	 our	 predictive	 models	 was	

Logistic	 Model	 Trees	 (LMT).	 It	 combines	 the	 heuristics	 of	 Logistic	 Regression	 and	

Decision	 Trees	 during	 its	 supervised	 training	 process.	 This	 is	 quite	 useful,	 since	 the	

former	tends	to	show	low	variance,	but	high	bias.	While	the	later	usually	has	low	bias,	

but	 is	 less	 stable	 and	 prone	 to	 overfitting	 (Landwehr	 et	 al.,	 2005).	 In	 a	 recent	

preliminary	 study	 dealing	 also	 with	 a	 classification	 problem,	 LMT	 beat	 in	 overall	

accuracy	 many	 other	 state-of-the-art	 Machine	 Learning	 algorithms	 when	 trying	 to	

estimate	sex	from	Procrustes-aligned	shape	matrices	(Coelho	et	al.,	2015).	

For	our	dataset	LMT	is	optimal,	since	the	data	we	collected	already	has	a	bias	and	

variance	problem.	Thus	a	classification	algorithm	that	is	robust	to	both	problems	is	the	

most	 scientifically	 honest	 and	 sound	 approach.	 As	 a	 structured	 predictive	 model,	 it	

consists	of	a	standard	decision	tree	construction	with	logistic	regression	functions	at	its	

leaves	 (Figure	 2-7).	 This	 makes	 it	 harder	 to	 interpret	 than	 simpler	 classification	

algorithms,	since	it	cannot	be	graphically	represented	as	a	tree	of	decisions	neither	as	an	

elegant	regression-style	formula.	



Materials	and	Methods	
	

	 	
28	

However,	 readers	 can	 still	 easily	 use	 any	 models	 created	 with	 LMT	 through	

loading	 their	 own	 landmark	 configurations	 into	 R	 and	 force	 an	 OPA	 between	 their	

obtained	 landmarks	 and	 our	 reference	 average	 shape,	 and	 then	 analyze	 their	 data	 by	

running	the	code	provided	in	the	following	chapters.	

	

LMT(examples){	
			root	<-	new	Node()	
			alpha	<-	getCARTAlpha(examples)	
			root.buildTree(examples,	null)	
			root.CARTprune(alpha)	
}	
	
buildTree(examples,	inititalLinearModels){	
			numIterations	=	
						CV_Iterations(examples,	inititalLinearModels)	
			initLogitBoost(initialLinearModels)	
			linearModels	<-	copyOf(inititalLinearModels)	
			for	i	=	1...numIterations{	
						logitBoostIteration(linearModels,	examples)	
			}	
			split	<-	findSplit(examples)	
			localExamples	<-	split.splitExamples(examples)	
			sons	<-	new	Nodes[split.numSubsets()]	
			for	s	=	1...sons.length{	
						sons.buildTrees(localExamples[s],	nodeModels)	
			}	
}	
	
	
CV_Iterations(examples,	initialModels)	{	
			for	fold	=	1...5	{	
						initLogitBoost(inititalLinearModels)	
						#	split	into	training/test	sets	
						train	<-	trainCV(fold)	
						test	<-	testCV(fold)	
						linearModels	<-	copyOf(inititalLinearModels)	
						for	i	=	1...200{	
									logitBoostIteration(linearModels,	train)	
									logErros[i]	+=	error(test)										
						}	
			}	
			numIterations	=	findBestIteration(logErrrors)	
			return	numIterations	
}	

Figure	2-7	-	Pseudocode	for	implementing	Logistic	Model	Trees,	(adapted	from	Landwehr	et	al.,	2005).	
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3 RESULTS AND DISCUSSION 

	

	

3.1 GETTING STARTED 

	

All	 the	 results	 presented	 within	 this	 manuscript	 have	 been	 automatically	

generated	as	a	.docx	file	through	the	knitr	package	for	R.	Even	this	paragraph	itself	was	

not	written	in	Word,	but	instead	in	R.	Contrary	to	the	standard,	this	has	the	advantage	of	

creating	a	 text	accompanied	by	 the	exact	 code	 that	generated	 the	graphics,	 tables	and	

other	results.	Hence,	 increasing	the	reproducibility	criteria,	allowing	other	researchers	

to	easily	run	the	data	analysis	 into	their	personal	computers	as	 long	as	they	have	data	

for	 it.	 This	 adheres	 to	 the	 tenants	 of	 the	 Open	 Data	 movement	 and	 Science	 2.0	

philosophy	by	promoting	data	analysis	transparency	among	scientists.	

If	you	desire	to	execute	in	your	computer	the	whole	data	analysis	present	in	this	

thesis	you	should	first	make	sure	to:	

	

• Have	installed	R	and	the	latest	version	of	RStudio	

• Install	 the	 latest	 version	 of	 the	 knitr	 package,	 by	 writing	

install.packages("knitr")	in	your	RStudio	console.	

	

To	run	the	code	that	produced	my	thesis	output:	

	

• Open	RStudio,	and	go	to	File	>	New	>	R	Markdown	

• Paste	in	the	contents	of	the	results.Rmd	available	in	this	thesis’	online	repository	

http://git.io/vYjNa,		or	by	contacting	me:	joao@osteomics.com	

• Click	Knit	Word	

	

You	 should	 not	 forget	 to	 use	 setwd("YOUR/FOLDER/LOCATION")	 to	 where	 the	

landmark	 files	 and	3D	meshes	are	 located.	Or	even	easier,	 just	open	 the	HOTProject-

GM.Rproj	file	available	in	the	repository,	since	it	automatically	loads	everything.	
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It	 should	run	 fine	as	 long	as	you	 follow	what	 is	 said	above.	 Just	 to	clarify,	 from	

here	on,	every	time	you	see	chunks	of	code,	you	can	easily	identify	them	through	the	box	

with	 light	background	and	different	 font	 type	 that	 gets	 colored	by	 the	 typology	of	 the	

programming	object.	There	you	also	see	some	commands	that	usually	have	a	#	symbol	

followed	by	some	sentence,	which	are	explanatory	commentaries	upon	what	the	code	is	

doing	to	help	non-experts	understanding	what	is	being	programmed.	If	it	is	a	double	##	

it	is	an	output	generated	by	the	code.	

	

3.2 DATA INPUT 

	

Our	landmarks	were	obtained	from	the	free	software	Landmark	Editor.	Likewise,	

it	was	attempted	to	use	auto3Dgm	for	the	same	aim,	and	also	in	order	to	compare	the	two	

approaches	(i.e.	semi-manual	versus	automatic).	Nonetheless,	as	it	can	be	seen	in	Figure	

3-1	 that	was	 generated	 from	 the	 output	 of	 the	auto3Dgm	 algorithm,	 a	 total	 of	 5	 burnt	

bones	 were	 inadequately	 aligned.	 Regrettably,	 this	 would	 effectively	 reduce	 the	

geometric	n	by	10,	since	their	counterparts	(i.e.	the	unburnt)	would	not	be	used	for	any	

particular	purpose	without	 their	 pair.	 Considering	 that	 no	way	was	 found	within	R	 to	

solve	this	problem,	this	approach	was	discontinued	mid-way	during	the	project	because	

it	would	considerably	reduce	our	n.	

	

	
Figure	 3-1	 -	 Shapes	 automatically	 scaled	 and	 aligned	 by	 auto3Dgm	 using	 256	 pseudolandmarks.	 The	
incorrectly	aligned	bones	are	presented	in	red,	which	are	all	burnt	humeri	 (of	CEI/XXI	5,	32,	35,	51	and	65).	Notice	
that	some	have	been	mirrored	(turned	into	left	antimeres),	others	were	rotated	180	degrees	in	an	axis	and	one	was	
rotated	in	another	axis	and	mirrored,	overall	very	chaotic	algebraic	transformations.	Despite	hundreds	of	attempts,	no	
elegant	solution	for	this	problem	was	found,	and	the	use	of	auto3Dgm	for	this	project	was	abandoned.	
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SW	<-	read.csv(file	=	'./data/SingularWarps.csv',	header	=	TRUE)	#	loads		
all	the	variables	that	aren't	shape-data.	
	
rawdata	<-	pts2array(pts.dir	=	'./data/pts-files')	#	loads	raw	landmark			
data	into	R,	similary	to	readland.nts(),	check	?readland.nts	
	
dimnames(rawdata)[[3]]	#	reads	each	geometric	configuration’s	name.	Useful
	to	confirm	if	the	order	and	naming	are	correct	and	consistent	with							
	singular	warps	order.	Codenames	have	ID,	sex	and	burning	temperature.	

##		[1]	"CEIXXI05F"					"CEIXXI05F900"		"CEIXXI08F"					"CEIXXI08F700"		
##		[5]	"CEIXXI17M"					"CEIXXI17M900"		"CEIXXI24F"					"CEIXXI24F800"		
##		[9]	"CEIXXI26F"					"CEIXXI26F900"		"CEIXXI29M"					"CEIXXI29M800"		
##	[13]	"CEIXXI32F"					"CEIXXI32F800"		"CEIXXI35M"					"CEIXXI35M900"		
##	[17]	"CEIXXI43M"					"CEIXXI43M800"		"CEIXXI49F"					"CEIXXI49F850"		
##	[21]	"CEIXXI50F"					"CEIXXI50F900"		"CEIXXI51M"					"CEIXXI51M900"		
##	[25]	"CEIXXI53F"					"CEIXXI53F800"		"CEIXXI57M"					"CEIXXI57M900"		
##	[29]	"CEIXXI64M"					"CEIXXI64M800"		"CEIXXI65F"					"CEIXXI65F900"		
##	[33]	"CEIXXI79M"					"CEIXXI79M900"		"CEIXXI86M"					"CEIXXI86M1000"	
##	[37]	"CEIXXI97F"					"CEIXXI97F1050"	

	

3.3 DATA PRE-PROCESSING AND GPA 

	

As	 result	 of	 poor	 preservation	 some	 humeri	 from	 our	 sample	 do	 not	 have	

anatomical	 parts	where	 specific	 landmarks	 should	 be	 located.	 This	was	 either	 due	 to	

taphonomic	 processes	 or	 because	 of	 the	 heating	 experiment	 itself.	 However,	 robust	

methods	have	been	devised	within	statistical	shape	analysis	in	order	to	handle	missing	

data.	 For	 solving	 this,	 the	 very	 convenient	 estimate.missing()	 function	 from	 the	

geomorph	package	is	used	to	generate	approximations	of	the	missing	landmarks.	

	

EM	<-	estimate.missing(rawdata,	method	=	'TPS')	#	This	command	estimates		
missing	landmarks	using	either	Thin	Plate	Spline	or	Regression.	Here	TPS		
was	chosen.	

	

Preforming	 GPA	 over	 your	 data	 is	 the	 quintessential	 step	 to	 start	 a	 statistical	

shape	analysis.	 In	geomorph	 this	 is	 achieved	with	 the	gpagen()	 command.	Our	aligned	

Procrustes	 coordinates,	 and	 specimens'	 centroid	 sizes	 are	 recorded	 as	 the	 variables	

procrustes$coords	and	procrustes$Csize,	respectively.	
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procrustes	<-	gpagen(EM,	ShowPlot	=	FALSE)	#	Procrustes	superimposition,		
creates	a	viable	dataset	for	applying	geometric	morphometrics	methods.	

	

Right	now	we	have	everything	we	need	to	start	a	multivariate	statistical	analysis	

of	 shape	 and	 its	 covariation	 with	 other	 variables	 (Bookstein,	 1997a).	 However	 it	 is	

better	to	do	some	graphical	exploration,	in	order	to	understand	our	data	and	correctly	

obtain	fruitful	inferences	from	it.	

	

3.4 EXPLORATORY DATA ANALYSIS 

	

An	 essential	 step	 of	 every	 data	 analysis,	 that	 rarely	 takes	 the	 spotlight,	 is	 the	

visual	data	exploration	that	antecedes	inference	or	modeling.	It	is	extremely	important	

in	the	sense	that	allows	us	to	allocate	our	precious	time	in	more	fruitful	avenues,	rather	

than	trying	everything	for	all	the	variables	without	a	rigorous	aim	in	mind.	

The	exploratory	data	analysis	was	broken	into	two	main	steps.	First	we	intended	

to	summarize,	describe	and	visualize	general	aspects	of	our	data.	This	was	achieved	in	

Table	 1	 and	 Figure	 3-2,	 but	 also	 complemented	 with	 the	 Table	 4	 in	 Appendix	 6.4.	

Second,	we	used	 a	method	based	 on	 the	Geometric	Morphometrics	 toolkit	 to	 look	 for	

possible	errors	in	the	landmark	placing	protocol.	

	

3.4.1 DESCRIPTIVE STATISTICS 
	

Now,	 we	 shall	 perform	 quick	 and	 very	 simple	 data	 manipulation	 to	 allow	 the	

construction	of	graphical	plots	and	tables.	We	provide	counts	of	values,	and	many	classic	

measures	developed	by	the	theory	of	probability	distributions.		

	

logSize	<-	log(as.numeric(procrustes$Csize))	#	The	log	of	Centroid	Size	is
	useful	and	recommended	in	the	literature	for	creating	models.	

	
Shapes	<-	procrustes$coords	#	Gives	a	new	name	easier	to	remember.	
	
kable(stat.desc(cbind(logSize,	SW[,-c(1:4)]),	norm	=	TRUE),	digits	=	2)	#	
	Creates	a	table.	Categorical	variables	were	removed	because	most	of	these
	stats	only	make	sense	for	numeric	variables.	
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Table	1	-	Descriptive	statistics	for	the	vectors	of	numeric	variables	in	our	dataset.	

	 logSize	 months.buried	 age	 temperature	 duration	 mass	

n	of	values	 38.00	 32.00	 38.00	 38.00	 38.00	 38.00	

n	of	nulls	 0.00	 0.00	 0.00	 19.00	 19.00	 0.00	

n	of	NA	 0.00	 6.00	 0.00	 0.00	 0.00	 0.00	

min	 6.35	 71.00	 70.00	 0.00	 0.00	 23.20	

max	 6.69	 84.00	 90.00	 1050.00	 195.00	 124.49	

range	 0.34	 13.00	 20.00	 1050.00	 195.00	 101.29	

sum	 249.39	 2358.00	 3050.00	 16500.00	 2569.00	 2588.03	

median	 6.59	 73.00	 81.00	 350.00	 37.50	 62.16	

mean	 6.56	 73.69	 80.26	 434.21	 67.61	 68.11	

SE	 0.01	 0.52	 1.02	 71.96	 11.64	 4.44	

CI95	 0.03	 1.06	 2.08	 145.80	 23.59	 9.00	

variance	 0.01	 8.61	 39.87	 196770.98	 5151.98	 750.38	

SD	 0.09	 2.93	 6.31	 443.59	 71.78	 27.39	

var.coef	 0.01	 0.04	 0.08	 1.02	 1.06	 0.40	

g1	 -0.54	 2.64	 -0.11	 0.05	 0.26	 0.33	

SC-g1	 -0.70	 3.19	 -0.14	 0.06	 0.34	 0.43	

g2	 -0.65	 6.63	 -1.31	 -1.99	 -1.66	 -1.01	

SC-g2	 -0.43	 4.10	 -0.88	 -1.33	 -1.11	 -0.67	

W	 0.95	 0.60	 0.94	 0.71	 0.78	 0.94	

W’s	p-value	 0.08	 0.00	 0.04	 0.00	 0.00	 0.06	

	 	 	 	 	 	 	
Legend:	SE	=	Standard	Error	of	the	Mean;	CI95	=	Confidence	Intervals	of	the	Mean	at	95%;	SD	=	Standard	Deviation;	
var.coef	=	variation	coefficient;	g1	=	the	skewness	coefficient;	SC-g1	=	significant	criterium	of	g1,	if	>	1	then	skewness	
is	significantly	different	than	zero;	g2	=	kurtosis	coefficient;	SC-g2	=	same	definition	as	g1SC	but	for	kurtosis;	W	=	the	
statistic	of	a	Shapiro-Wilk	test	of	normality;	W’s	p-value	is	the	associated	probability	of	the	W	statistic.	

	

Next,	we	check	potential	correlations	and	possibility	for	regression	models	in	our	

non-shape	related	data	(i.e.	Singular	Warps)	and	the	logarithm	of	Centroid	Size.	This	last	

measure	 is	 also	 included	 because	 it	 is	 a	 vector	 of	 size	 and	 can	 be	 easily	 represented.	

Procrustes	landmarks	are	a	p	*	k	*	x	data	matrix,	in	our	case,	a	shape	configuration	of	35	

landmarks,	3	dimensions	and	38	individuals.	Therefore,	it	would	be	too	complicated	to	

visualize	 through	 the	graphical	device	of	Figure	3-2	or	Table	1	and	so	shape	data	was	

not	included	here.	

	

scatterplotMatrix(cbind(logSize,	SW[	,-c(1,2)]),	col	=	c('#f1c40f',	'#e74c
3c',	'black'),	lwd	=	2)	
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Figure	3-2	-	Scatterplot	matrix	of	our	variables	to	visually	complement	the	descriptive	statistics	of	Table	1.	Yellow	
lines	 are	 simple	 linear	 models	 (lm)	 while	 red	 lines	 are	 generalized	 additive	 models	 (GAM)	 with	 respective	 95%	
confidence	intervals	in	dashed	red	lines.	

	

3.4.2 EXPLORATION OF UNCERTAINTY 
	

Since	 we	 have	 seen	 how	 all	 the	 other	 variables	 are	 interacting,	 now	we	 focus	

solely	 on	 our	 shape	 data.	 First,	 we	 try	 to	 see	 if	 there	 are	 any	 outliers	 in	 terms	 of	

landmark	configurations	within	our	dataset.	This	can	be	done	with	the	plotOutliers()	

function,	which	is	very	useful	because	it	allows	researchers	to	verify	if	any	specimen	was	

incorrectly	digitized	(e.g.	landmarks	out	of	order,	or	anatomically	misplaced).	

	

outliers	<-	plotOutliers(Shapes)	#	Plots	potential	outliers	through							
calculation	of	Procrustes	Distance.	
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Figure	 3-3	 -	 Plot	 for	 potential	 shape	 outliers.	 After	 GPA,	 all	 38	 shapes	 in	 the	 sample	 were	 plotted,	 through	
Procrustes	distances	from	Mean	Shape.	The	burnt	state	of	4	different	humeri	deviate	considerably	from	the	average	
shape	and	so	we	could	be	looking	at	potentially	outliers	in	our	sample.	

	

Interestingly,	 after	 a	 visual	 check	 in	 Landmark	 Editor,	 none	 of	 the	 “outliers”	

marked	in	red	(Figure	3-3)	had	actually	misplaced	or	disordered	anatomical	landmarks.	

These	4	appear	as	outliers	because	of	how	much	heat-induced	warping	and	 fracturing	

affected	their	shape.	Together,	CEI/XXI	65,	32,	5,	and	50	represent	the	most	extremely	

modified-by-heat	humeri	within	our	sample.	This	can	be	confirmed	visually	with	the	3D	

meshes	files,	but	is	also	sustained	by	performing	a	PCA	on	our	data.	

	

3.5 PRINCIPAL COMPONENTS ANALYSIS 

	

The	 following	 function	 plots	 a	 set	 of	 Procrustes-aligned	 specimens	 in	 tangent	

space	along	their	principal	axes	(Figure	3-4).	In	our	case	the	plot	illustrated	that	all	the	

bones	 before	 heating,	 and	 also	 the	 bones	 that	were	 not	much	 affected	 by	 the	 heating	

experiment	tend	to	cluster	around	the	Origin	of	the	Cartesian	plot	of	the	two	Principal	

Components.	 The	more	 extremely	modified	 by	 heat	 are	 dispersed	 in	 the	 periphery	 in	

what	seems	 to	be	pseudorandom	directions.	A	bigger	dataset	 is	needed	 to	understand	

the	patterns	governing	these	directions,	which	are	possibly	describing	different	ways	in	

which	the	bone	is	being	deformed	by	heat.	

#	Define	graphical	proprieties	of	the	PC	plot:	
	
gp	<-	as.factor(SW$temperature)	
col.gp	<-	c('#bdc3c7',	'#f1c40f',	'#f39c12',	'#e67e22',	'#d35400',	'#e74c3
c',	'#c0392b')	#	Picking	html	colors	for	the	plot	
pch.gp	<-	c(12:18)	
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names(col.gp)	<-	levels(gp)	
names(pch.gp)	<-	levels(gp)	
col	<-	col.gp[match(gp,	names(col.gp))]	
pch	<-	pch.gp[match(gp,	names(pch.gp))]	
	
#	Calculate	a	PCA:	
	
y	<-	two.d.array(Shapes)	
pc.res	<-	prcomp(y)	
pcdata	<-	pc.res$x	
	
#	Code	our	plot:	
	
plot(pcdata[,	1],	pcdata[,	2],	pch	=	pch,	asp	=	1,	col	=	col,	cex	=	1.5,	x
lab	=	paste('PC	',	1),	ylab	=	paste('PC	',	2))	
segments(min(pcdata[,	1]),	0,	max(pcdata[,	1]),	0,	lty	=	2,	lwd	=	1)	
segments(0,	min(pcdata[,	2]),	0,	max(pcdata[,	2]),	lty	=	2,	lwd	=	1)	
text(pcdata[,	1],	pcdata[,	2],	dimnames(rawdata)[[3]],	adj	=	c(-0.05,	-0.7
),	cex	=	0.7)	
	
#	Add	a	legend:	
	
legend(0.12,	0.04,	legend	=	levels(gp),	pch	=	pch.gp,	col	=	col.gp)	

	

Figure	3-4	-	Dataset	projected	onto	PC1-2	Subspace.	Together	PC1+PC2	have	a	Cumulative	Proportion	of	Variance	
=	0.4490,	meaning	 they	 explain	nearly	half	 of	 the	 variance	 in	our	 sample.	The	0	 value	 in	 temperature	 is	 actually	 a	
NULL	value	corresponding	to	the	geometries	of	the	unburnt	counterparts.	

	

One	should	never	 forget	that	ultimately,	PCA	is	nothing	more	than	a	rotation	of	

the	original	data.	Its	usefulness	lies	in	the	fact	that	our	features	will	exhibit	covariances	
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because	they	are	influenced	by	and	interact	with	common	processes.	The	magnitudes	of	

variances	described	by	all	components	can	be	seen	in	Figure	3-5.	

	

#	To	plot	a	graph	of	the	proportion	of	variance	explained	by	each	PC:	
	
pvar	<-	(pc.res$sdev^2)/(sum(pc.res$sdev^2))	

	
names(pvar)	<-	seq(1:length(pvar))	

	
barplot(pvar,	main	=	'Eigenvalues',	xlab=	'Principal	Components',	ylab	=	'
%	Variance',	col	=	'black',	las	=	2,	cex.names	=	1)	

	

Figure	3-5	-	Scree	plot	of	the	proportion	of	variance	in	descending	order.	The	cumulative	proportion	of	the	first	
13	PCs	explain	more	than	90%	of	the	variance	in	the	shapes	sample.	

	

3.6 THIN-PLATE SPLINE PLOTS 

	

Also	 important	 is	 to	visualize	 the	changes	within	a	particular	bone,	between	 its	

pre-heating	shape	and	deformed-by-heat	shape	through	TPS	(Figure	3-6).	For	achieving	

this,	 we	 generated	 thin-plate	 spline	 deformation	 grids.	 To	 visualize	 3D	 data	

deformations	 into	 the	paper	 format	 that	bounds	 this	 thesis,	 thin-plate	spline	grids	are	

show	in	the	x-y	and	x-z	axis	(Figure	3-7).	The	y-z	axis	is	not	presented,	because	it	is	very	

difficult	 to	 understand	 anything	 from	 that	 perspective.	 Also,	 because	 the	 other	 two	

views	in	2D	are	sufficient	to	show	all	the	3	axes	from	3D	already.	Thus,	a	third	view	is	

redundant.	

	

GP	<-	gridPar(pt.bg	=	'black',	pt.size	=	0.5,	n.col.cell	=	25)	#	Defines		
general	graphical	proprieties	of	the	following	plots.	
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plotRefToTarget(Shapes[,,1],	Shapes[,,2],	gridPars	=	GP,	method	=	'TPS')	#
	TPS	plot	of	CEIXXI05F	

	

Figure	3-6	-	TPS	plot	of	individual	CEI/XXI	5,	with	reference	shape	being	the	pre-heating	state	and	deforming	shape	
the	post-heating	shape.	As	it	can	be	seen,	even	though	there	are	only	4	landmarks	in	the	diaphysis,	these	were	enough	
to	 visually	 demonstrate	 the	 bending	 curvature	 resulting	 from	 the	 heat-induced	 skeletal	 warping	 which	 is	 most	
notable	in	the	X-Y	axes.	

plotRefToTarget(Shapes[,,13],	Shapes[,,14],	gridPars	=	GP,	method	=	'TPS')
	#	TPS	plot	of	CEIXXI32F	

	

Figure	 3-7	 -	 TPS	 plot	 of	 individual	 CEI/XXI	 32,	with	 reference	shape	being	 the	pre-heating	state	and	deforming	
shape	the	post-heating	shape.	As	it	can	be	seen	this	bone	has	suffered	considerable	from	the	effects	of	heat-induced	
skeletal	shrinking.	Another	interesting	feature	of	 individual	32	was	that	 it	 fractured	nearly	the	middle,	what	caused	
warping	 to	 create	 a	 rotational	 or	 torsion	 effect	 in	 the	distal	 part	 of	 the	humerus,	 this	 can	be	understood	 easily	 by	
looking	at	the	left	side	of	the	Y-Z	perspective.	

	

Only	 individual	 CEI/XXI	 5	 and	32	 are	 shown	here	 in	 the	 results	 for	 illustrative	

purposes	 because	 having	 the	 whole	 dataset	 would	 take	 too	 much	 space.	 For	 more	

comprehensive	 results	 check	 the	 Appendix	 6.6.	 There,	 a	 total	 of	 19	 TPS	 deformation	

plots	can	be	found,	fully	describing	the	whole	dataset.	

	

3.7 PREDICTIVE MODELLING 

	

“Essentially,	all	models	are	wrong,	but	some	are	useful.”		

—	(George	Box	in	Box	&	Draper,	1987:	424)	

	

	 Creating	models	with	such	reduced	sample	sizes	 is	usually	not	a	good	decision.	

Here,	we	create	them,	to	show	how	easy	 it	 is	 to	 implement	and	test	predictive	models	

with	our	kind	of	data.	While	all	models	presented	are	already	fully	operational,	it	is	hard	

to	truly	estimate	their	actual	degree	of	accuracy.	This	is	due	to	deficient	implementation	

of	cross-validation	algorithms	when	dealing	with	badly	represented	factors	and	small	n.	
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3.7.1 PROCRUSTES ANALYSES OF VARIANCE 
	

A	Procrustes	ANOVA	 is	used	 to	quantify	 the	 relative	amount	of	 shape	variation	

attributable	 to	 one	 or	 more	 variables	 in	 a	 linear	 model	 and	 assesses	 this	 variation	

through	permutation.	In	geomorph	 the	function	procD.lm()	allow	us	to	input	data	by	a	

y~X	formula,	where	'y'	specifies	the	response	variable	(shape	data),	and	'X'	contains	one	

or	more	independent	variables	(Adams	et	al.,	2015).	

procD.lm()		follows	the	philosophy	that:	

	

• Randomization	procedures	are	used	to	generate	empirical	sampling	distributions	

to	assess	significance	of	effects.	

• Effect	sizes	are	estimated	as	standard	deviates	from	such	sampling	distributions.	

	

The	 function	 performs	 statistical	 assessment	 of	 the	 terms	 in	 the	 model	 using	

Procrustes	distances	among	specimens,	instead	of	explained	covariance	matrices	among	

variables.	With	 this	 approach,	 the	 sum-of-squared	 Procrustes	 distances	 are	 used	 as	 a	

measure	 of	 SS	 and	 permutation	 is	 used	 to	 evaluate	 observed	 SS	 (Adams	 &	 Otárola-

Castillo,	2013).	

	

#	The	residual	SS	(RSS)	of	a	linear	model	(also	called	the	sum	of	squared	
error,	SSE)	is	found	as	follows:	
	
RSS	<-	function(fit)	sum(diag(resid(fit)%*%t(resid(fit))))		
	
Sex	<-	SW$sex	
	
fit1	<-	lm(y	~	1)	#	model	containing	just	an	intercept	
fit2	<-	lm(y	~	logSize)	#	allometric	scaling	of	shape	
fit3	<-	lm(y	~	logSize	+	Sex)	#	previous	model	+	sexual	dimorphism	
fit4	<-	lm(y	~	logSize	*	Sex)	#	previous	model	+	interaction	between	sex		
and	log(CS)	
	
#	For	any	model	'fit',	we	can	summarize	the	error	of	prediction	by	calcula
ting	RSS.	

	
RSS(fit1)	

##	[1]	0.06791796	

RSS(fit2)	
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##	[1]	0.06537494	

RSS(fit3)	

##	[1]	0.06288619	

RSS(fit4)	

##	[1]	0.05736431	

kable(procD.lm(Shapes	~	logSize*Sex,	RRPP	=	TRUE),	digits	=	4)	

	

Table	2	-	Procrustes	ANOVA	for	shape	data	is	being	used	as	a	tool	for	model	comparison.		A	model	where	size	
takes	sexual	dimorphism	into	account	is	superior	to	the	other,	simpler	models.	

	 df	 SS	 MS	 Rsq	 F	 Z	 P.value	

logSize	 1	 0.0025	 0.0025	 0.0374	 1.5073	 1.3018	 0.149	

Sex	 1	 0.0025	 0.0025	 0.0366	 1.4751	 1.2981	 0.144	

logSize:Sex	 1	 0.0055	 0.0055	 0.0813	 3.2728	 2.9602	 0.002	

Residuals	 34	 0.0574	 0.0017	 	 	 	 	

Total	 37	 0.0679	 	 	 	 	 	

	

In	 procD.lm()	 two	 resampling	 procedures	 are	 possible:	 (1)	 if	 RRPP=FALSE,	 the	

rows	of	the	matrix	of	shape	variables	are	resampled	in	relation	to	the	design	matrix;	(2)	

if	RRPP=TRUE,	a	residual	randomization	permutation	procedure	is	utilized	(Collyer	et	al.,	

2014).	While	 similar	 for	 single-factor	designs,	when	evaluating	 factorial	models	 it	 has	

been	 shown	 that	 RRPP	 attains	 higher	 statistical	 power	 and	 thus	 is	 better	 at	 pattern-

recognition	(Anderson	&	ter	Braak,	2003).	

In	 the	 literature,	 the	model	we	 just	 created	has	been	described	as	a	Procrustes	

ANOVA	(Goodall,	1991).	However	 it	 is	actually	 identical	 to	 the	popular	distance-based	

ANOVA	designs	(Anderson,	2001),	except	that	it	uses	coordinates	transformed	through	

Procrustes	 superimposition.	 Our	 objective	 here	 is	 to	 show	 the	 ability	 of	 Procrustes	

ANOVA	to	compare	models.	As	it	is	shown	in	Table	2	the	model	fit4	that	corresponds	to	

size	 and	 sexual	 dimorphism	 interacting,	 outperforms	 the	 other	 simpler	 models.	 This	

same	 procedure	 could	 be	 repeated	 for	 many	 other	 variables	 and	 model	 designs,	

however	having	 in	consideration	our	unbalanced	 factors	 in	most	of	 the	other	 relevant	

variables	available	it	would	be	quite	absurd	to	expect	reliable	error	estimates	(RSS)	of	

most	 possible	 models.	 Also	 the	 R-Squared	 values	 obtained	 are	 currently	 too	 low	 to	

consider	this	models	as	useful	for	reliable	predictions.	
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3.7.2 GROWING TREES INTO ANSWERS 
	

The	following	model	lmtFit1	uses	Logistic	Model	Trees	(Landwehr	et	al.,	2005)	

to	predict	if	a	humerus	was	burnt	or	not	with	92.1%	accuracy,	by	being	trained	on	the	

first	 8	 Principal	 Components	 of	 our	 sample.	 So	 how	 should	 nonmorphometricians	

interested	 in	burnt	remains	proceed	to	apply	this	model	 to	a	humerus	 from	their	own	

sample?	By	following	the	whole	protocol:	(1)	3D	Scanning	a	humerus;	(2)	Processing	it	

in	MeshLab;	(3)	Obtain	the	defined	35	Landmarks	for	that	bone;	(4)	Perform	an	OPA	on	

the	 obtained	 configuration	 by	 using	 the	 mean	 shape	 of	 our	 sample	 as	 the	 reference	

shape;	 (5)	 perform	 a	 PCA	 on	 the	 configuration,	 (6)	 apply	 the	 model	 by	 using	 the	R	

function	predict()	on	his	first	8	PCs.	Alternatively,	step	1,	2,	and	3	could	be	swapped	by	

obtaining	landmarks	directly	from	a	MicroScribe	or	a	similar	device.	

data.models	<-	cbind(SW[,-c(1,	2)],	logSize,	pcdata[	,1:8])	
	
lmtFit1	<-	LMT(burnt	~	PC1+PC2+PC3+PC4+PC5+PC6+PC7+PC8,	data	=	data.models
)	
summary(lmtFit1)	

##		
##	===	Summary	===	
##		
##	Correctly	Classified	Instances										35															92.1053	%	
##	Incorrectly	Classified	Instances									3																7.8947	%	
##	Kappa	statistic																										0.8421	
##	Mean	absolute	error																						0.2245	
##	Root	mean	squared	error																		0.297		
##	Relative	absolute	error																	44.8947	%	
##	Root	relative	squared	error													59.4075	%	
##	Coverage	of	cases	(0.95	level)									100						%	
##	Mean	rel.	region	size	(0.95	level)						97.3684	%	
##	Total	Number	of	Instances															38						
##		
##	===	Confusion	Matrix	===	
##		
##			a		b			<--	classified	as	burnt	
##		18		1	|		a	=	no	
##			2	17	|		b	=	yes	

	

However,	 in	most	 cases,	 for	 the	 trained	osteologist	 it	 is	 easy	 to	understand	 if	 a	

bone	was	burnt	or	not	by	just	looking	at	it.	Even	if	dealing	with	particularly	complicated	

cases,	 there	 are	 already	 well	 established	 methods	 like	 Fourier	 Transform	 Infrared	

Spectroscopy	(Munro	et	al.,	2007;	Thompson	et	al.,	2009)	or	histological	techniques	that	
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can	erase	most	doubts	if	they	arise	(Bradtmiller	&	Buikstra,	1984;	Nelson,	1992;	Hiller	et	

al.,	 2003).	 So	 why	 would	 a	 model	 like	 this	 be	 useful?	 It	 would	 not:	 it	 is	 too	 time	

consuming.	 A	 far	 more	 useful	 model	 would	 be	 a	 similar	 one	 that	 could	 not	 only	

determine	if	a	bone	was	burnt	but	at	which	maximum	temperature	it	was	burnt.	Next,	

we	implement	such	model	in	a	similar	fashion.	

	

lmtFit2	<-	LMT(as.factor(temperature)	~	PC1+PC2+PC3+PC4+PC5+PC6+PC7+PC8,		
data	=	data.models)	
summary(lmtFit2)	

##		
##	===	Summary	===	
##		
##	Correctly	Classified	Instances										32															84.2105	%	
##	Incorrectly	Classified	Instances									6															15.7895	%	
##	Kappa	statistic																										0.7415	
##	Mean	absolute	error																						0.1091	
##	Root	mean	squared	error																		0.2116	
##	Relative	absolute	error																	54.8523	%	
##	Root	relative	squared	error													68.3659	%	
##	Coverage	of	cases	(0.95	level)									100						%	
##	Mean	rel.	region	size	(0.95	level)						56.391		%	
##	Total	Number	of	Instances															38						
##		
##	===	Confusion	Matrix	===	
##		
##			a		b		c		d		e		f		g			<--	classified	as	
##		19		0		0		0		0		0		0	|		a	=	0	
##			0		1		0		0		0		0		0	|		b	=	700	
##			4		0		2		0		0		0		0	|		c	=	800	
##			0		0		0		1		0		0		0	|		d	=	850	
##			1		0		0		0		8		0		0	|		e	=	900	
##			1		0		0		0		0		0		0	|		f	=	1000	
##			0		0		0		0		0		0		1	|		g	=	1050	

	

Despite	 the	 lack	 of	 values	 for	 each	 factor,	 plus	 the	 short	 range	 of	 maximum	

temperatures	experimented	with,	which	of	course	causes	overfitting,	combined	with	the	

low	diversity	of	the	factors	themselves,	which	forces	us	to	use	a	classification	algorithm	

for	temperatures	instead	of	a	regression,	our	model	lmfit2	provided	what	seems	to	be	

very	 promising	 results	 (Overall	 Accuracy	 =	 84.21%).	 Here	 is	 shown	 a	 stepping-stone	

from	where	one	could	eventually	create	a	very	powerful	model	by	increase	n	in	each	of	

the	factors	of	the	dependent	variable,	in	order	to	reduce	overfitting	while	increasing	or	

maintaining	overall	accuracy.	
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4 CONCLUSION 

	

	

“All	anthropological	analyses	conducted	on	burned	remains	will	be	wholly	and	

fundamentally	inaccurate”		

—	(Thompson,	2005:	6)	

	

As	a	project	aimed	at	improving	the	current	methods	in	burnt	remains	theory,	it	

is	still	 in	a	 long	way	from	bringing	any	effective	 impact	 to	the	 field.	Sample	size	was	a	

major	problem	that	 led	most	of	the	data	analysis	towards	a	theoretical	cul-de-sac.	Low	

sample	 size	 undermines	 reliability,	 reduces	 statistical	 power	 and	 reproducibility	 of	

results,	while	overestimating	effect	size	(Stodden,	2015).	It	 is	therefore	a	problem	that	

can	 only	 be	 overcome	 by	 keeping	 on	 collecting	 data,	 with	 a	 focus	 on	 well-balanced	

experimental	 design.	 Meaning	 that	 the	 factors	 within	 variables	 must	 not	 be	 so	

disproportionately	represented	as	they	actually	are.	For	example:	up	to	now,	9	skeletons	

were	burnt	at	900°C,	other	6	at	800°C,	and	for	all	the	other	temperatures	experimented	

with	 (500,	 700,	 850,	 1000	 and	 1050°C)	 we	 have	 only	 one	 case	 representing	 each.	

Obviously	this	severely	limits	the	predictive	power	of	any	model	since	you	cannot	train	a	

machine-learning	algorithm	with	only	a	few	cases	for	each	factor.	Certainly	there	is	no	

algorithm	 that	 will	 learn	 how	 to	 represent	 these	 in	 such	 conditions.	 In	 spite	 of	 that,	

many	experimental	studies	in	the	burnt	osteology	literature	have	even	smaller	samples.	

There	are	 the	 typical	n	=	1	case-studies	(e.g.	DeHaan	&	Nurbakhsh,	2001)	 that	usually	

are	about	burning	a	carcass	of	an	animal	to	record	the	effects.	Others,	such	as	Thurman	

and	Willmore	(1981)	had	burned	8	human	humeri	for	their	analysis;	and	Nugent	(2010)	

attempted	 to	 estimate	 the	 biological	 profile	 of	 19	 cremated	 individuals,	 yet	 only	 18	

humeri	 were	 analyzed.	 Contrasting,	 our	 sample	will	 keep	 on	 growing	 into	 the	 future,	

benefiting	from	being	part	of	the	HOT	Project	and	the	CEI/XXI.	But	again:	the	solution	is	

to	focus	on	good	experimental	design,	just	increasing	n	blindly	will	not	be	enough.	

Unfortunately,	my	data	 analysis	 is	 also	 included	 in	 a	project	 suffering	 from	 the	

‘myth	 of	 flesh’,	 which	 shows	 an	 overall	 high	 prevalence	 in	 anthropological	 studies	

concerning	 taphonomy.	 It	 has	 been	 explained	 as	 a	 “(…)	 bias	 [that]	manifests	 itself	 in	

experimental	 research	 and	 analyses	 that	 treat	 skeletal	 elements	 as	 though	 they	 had	

always	 existed	 without	 the	 encumbrances	 of	 skin,	 muscle,	 ligament	 and	 other	 soft	
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tissues	(…)”	(Haglund	&	Sorg,	1996:	3).	Eventually,	even	 if	a	reasonable	sample	size	 is	

reached	 in	 the	 future	 and	 powerful	 predictive	 models	 are	 created,	 one	 must	 first	

question:	to	what	point	would	these	be	reliable	when	applied	to	burnt	bones	originating	

from	 forensic	 cases?	 Prudency	 is	 mandatory,	 since	 forceful	 generalization	 of	 specific	

models	usually	leads	to	worthless	results.	Current	hypotheses	state	that	soft	tissues	are	

not	just	restricting	heat	transfer	differentially	through	their	thickness	and	composition,	

but	also	cutting	off	the	oxygen	supply	to	the	underlying	bone	(McKinley	&	Tech,	2015).	

This	leads	us	to	another	problem:	actual	combustion	versus	pure	heat	transfer.	

Even	 though	 terms	 such	 as	 ‘burning’,	 ‘burned’	 or	 ‘burnt’	 have	 been	 used	

recurrently	 throughout	 this	 thesis,	 it	 is	 explicit	 that	 the	 experiment	 only	 deals	 with	

thermally	 modified	 bones,	 which	 were	 not	 actually	 burned	 amid	 fire.	 Consequently,	

other	 variables	 that	 are	not	being	 accounted	 for,	 that	 can	also	bias	 any	predictions	 to	

real-life	situations,	are	the	type	and	quantity	of	fuel,	plus	oxygen	content	or	supply.	Such	

variables	are	of	the	uttermost	importance	when	dealing	with	combustion	(i.e.	fire),	but	

do	not	really	interfere	with	heat-transfer	in	the	absence	of	combustion.	Thus,	it	would	be	

senseless	 for	 us	 to	 account	 for	 these,	 even	 though	 such	 variables	 are	 possibly	 very	

pertinent	 in	 arsons,	 mass	 disasters,	 various	 ethno-historic	 or	 archaeological	 types	 of	

cremation	and	so	on	(DeHaan,	2015).	

Until	now,	the	reader	might	believe	that	no	remarkable	positive	conclusions	can	

be	achieved	in	this	particular	line	of	research.	But	by	using	a	metaphor	that	would	work	

much	better	if	a	particularly	famous	movie	title	was	written	backwards:	we	just	passed	

through	the	Ugly	and	the	Bad.	So,	now	comes	the	Good.	

Is	thermally	modified	dry	bone	that	different	from	typical	human	burnt	remains?	

Throughout	the	years	evidences	have	come	up,	suggesting	the	gap	between	both	might	

be	 far	 shorter	 than	 previously	 thought.	 Until	 demonstrated	 otherwise	 (Buikstra	 &	

Swegle,	 1989;	 Spennemann	 &	 Colley,	 1989),	 most	 literature	 attributed	 warping	 as	 a	

phenomenon	 exclusive	 of	 hydrated	 bones.	 Many	 papers	 (Baby,	 1954;	 Binford,	 1963;	

Thurman	 &	Willmore,	 1981;	 Etxéberria,	 1994)	 interpreted	 presence	 of	 warping	 as	 a	

discriminant	 factor	 between	 burnings	 with	 prior	 tissue	 removal	 as	 opposed	 to	

excarnation	absence.	Meaning	that	at	least	35	years	of	burnt	osteology	up	to	that	point,	

worked	on	unsupported	and	false	assumptions	on	one	of	its	most	basic	aspects.	Heating	

experiments	 under	 controlled	 conditions	 are	 thus	 crucial	 for	 busting	 myths,	 creating	

insights,	 and	 stimulating	 progress	 within	 this	 scientific	 domain	 (Thompson,	 2005,	
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2009).	But	as	have	been	continuously	cautioned,	there	are	many	problems	that	should	

be	rigorously	addressed.	If	so,	this	kind	of	research	might	bring	tremendously	value	for	

forensic	anthropologist	and	others	dealing	with	human	burnt	remains.	

It	 was	 demonstrated	 how	 to	 craft	 predictive	 models	 for	 estimating	 burning	

conditions	such	as	maximum	temperature	and	it	was	discussed	how	to	improve	the	ones	

that	 have	 been	 created	 in	 the	 context	 of	 this	 thesis.	 If	 this	 research	 continues,	 these	

models	will	hopefully	become	powerful	enough	to	be	used	by	other	researchers	without	

any	major	obstacles.	Even	if	such	is	not	bound	to	happen	with	this	particular	research,	it	

might	 inspire	 other	 colleagues	 to	 obtain	 their	 own	 data	 and	 create	 their	 own	models	

based	on	the	toolkit	of	GMM	and	ML	algorithms.	Since	this	was	demonstrated	here	to	be	

a	possible	route,	which	still	needs	to	be	much	more	explored	for	the	thermally-modified	

bones	problematic.	

Steadily,	it	cannot	be	stressed	enough	how	digital	3D	preservation	of	anatomical	

structures	 exposed	 to	 heat	 is	 essential	 and	 how	 staggering	 it	 is	 that	 it	 as	 been	 pretty	

much	 dismissed,	 with	 the	 only	 exception	 found	 in	 literature	 being	 Imaizumi	 et	 al.	

(2014).	Subjecting	osteological	material	to	heat	is	a	great	source	of	data	with	potential	

to	 infer	 not	 just	 correlation,	 but	 also	 causation.	 Simultaneously,	 without	 the	 proper	

protocol	 a	 considerable	 amount	 of	 data	 gets	 destroyed	 as	 well	 during	 the	 process.	

Collecting	measurements	such	as	lengths,	mass	and	so	on	can	be	useful,	but	it	is	far	from	

enough.	Perhaps	most	of	 the	 field	 is	unaware	of	 the	analytical	possibilities	brought	by	

having	 data	 preserved	 in	 virtual	 3D	 files.	 Even	 Imaizumi	 et	 al.	 (2014)	 used	 their	

collected	CT	scans	solely	for	the	purpose	of	calculating	volumetric	differences.	Which	is	

possibly	one	of	the	best	ways	to	directly	measure	shrinkage,	but	offers	no	possibilities	

for	 warping	 quantification.	 Awareness	 of	 GMM	 and	 the	 possibility	 of	 curating	 3D	

databases	must	be	brought	into	burnt	osteology,	or	otherwise	knowledge	that	is	clearly	

within	grasp	will	continue	to	escape	us.	

Models	 should	 be	 created	 with	 other	 bones	 as	 well,	 besides	 the	 humerus.	

Actually,	 it	 was	 originally	 intended	 to	 use	 both	 femura	 and	 humeri,	 alas	 it	 was	

impossible.	Because	after	the	experiment,	femurs	almost	always	collapsed	on	their	own	

weight,	having	 fragmentation	and	far	more	extreme	fractures,	 thus	being	overall	more	

fragile	(Figure	4-1).	Following,	the	final	n	of	femurs	that	could	be	3D	scanned	before	and	

after	heating	was	so	small	that	would	be	insane	to	try	to	perform	any	analysis	with	the	

few	obtained	3D	meshes.	However	tibiae	and	ulnae	tend	to	preserve	well	and	can	be	3D	
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scanned	 in	 an	 identical	 protocol	 to	 the	 one	 provided	 earlier.	 Foot	 bones	 also	 tend	 to	

preserve	considerably	well,	regrettably	these	do	not	tend	to	show	alterations	with	such	

exuberance.	 For	 future	 attempts	 it	 is	 recommend	 that	 other	 researchers	 virtually	

preserve	 the	 tridimensional	 meshes	 of	 as	 many	 bones	 that	 will	 be	 subjected	 to	

experimental	heating	as	possible,	since	these	have	high	potential	for	improving	current	

models	 and	 creating	new	ones.	 The	methods	devised	here	 are	 yet	 to	 be	 explored	 and	

performed	into	any	other	burnt	bones.	

	

 
Figure	4-1	 -	 Left	 femur	of	 individual	 CEI/XXI	32	after	being	burnt	at	800°C	for	120	minutes,	 from	two	different	
perspectives.	Even	 though	 the	bone	was	 flawlessly	3D	scanned	and	digitally	curated	 for	posterity,	 it	was	broken	 in	
half	 during	 the	process,	which	demonstrates	 its	 inherent	 fragility.	 Yet,	 the	 fact	 that	 a	 complete	 3D	model	 could	be	
attained	from	a	fragmented	bone	shows	some	promise	for	digital	forensic	reconstruction	of	fragmented	burnt	bones.	
This	is	yet	another	point	in	favor	of	using	3D	laser	scanning	technologies	that	should	be	further	explored	in	the	future.	

	

Ultimately,	 Thompson’s	 quote	 in	 the	 beginning	 of	 the	 Conclusion	 is	 still	 as	

pertinent	 as	 it	 was	 10	 years	 ago.	 Nevertheless,	 with	 rigorous	 implementation	 of	

different	 methodologies,	 perhaps	 anthropological	 analyses	 conducted	 on	 burned	

remains	do	not	need	to	keep	on	being	“wholly	and	fundamentally	inaccurate”	and	rather	

being	 only	 partially	 inaccurate,	 under	 some	 controlled	 error.	Which	 is	 a	 far	 less	 lurid	

perspective;	as	I	just	passed	by	to	bring	you	hope.		 	
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6 APPENDIX 

	

6.1 LIST OF ANATOMICAL LANDMARKS OF THE HUMERUS 

	

library(knitr)	
	
codebook	<-	read.csv(file	=	"./data/codebook.csv",	header	=	TRUE)	
	
kable(codebook)	

	

Table	 3	 -	 Humeri’s	 landmarks	 and	 descriptions	 adapted	 from	Rosas	et	 al.	 (2015).	Type	3	and	other	 landmarks	
hard	 to	 digitize	 in	 a	 fully	 computational	 workstation	 were	 not	 included	 in	 our	 protocol.	 The	 last	 column	
“Abbreviation”	 shows	 the	 codification	 of	 landmarks	 chosen	 in	 the	 context	 of	 this	 thesis.	 From	 the	 43	 original	
landmarks,	35	were	used	in	our	protocol.	

Landmark	 Type	 Description	 Label	

1	 2	 Most	projecting	point	of	the	lateral	epicondyle	 S000	

2	 1	 Proximal	junction	point	between	lateral	epicondyle	and	
capitulum	

S001	

3	 1	 Distal	junction	point	between	lateral	epicondyle	and	
capitulum	

S002	

7	 2	 Proximal	junction	point	between	medial	trochlea	and	medial	
epicondyle	

S003	

8	 2	 Most	projecting	point	of	the	medial	epicondyle	 S004	

9	 1	 Proximal	anterior	point	of	the	lateral	trochlea	 S005	

10	 1	 Proximal	anterior	point	of	the	medial	trochlea	 S006	

11	 1	 Proximal	posterior	point	of	the	lateral	trochlea	 S007	

12	 1	 Proximal	posterior	point	of	the	medial	trochlea	 S008	

13	 2	 Proximal	point	of	the	olecranon	fossa	 S009	

14	 2	 Distal	point	of	the	olecranon	fossa	 S010	

15	 2	 Lateral	point	of	the	olecranon	fossa	 S011	

16	 2	 Medial	point	of	the	olecranon	fossa	 S012	

17	 2	 Maximum	curvature	between	medial	epicondyle	and	shaft	 S013	

18	 2	 Most	prominent	point	of	the	lateral	supracondylar	ridge	 S014	

19	 1	 Proximal	point	of	the	lateral	supracondylar	ridge	 S015	

20	 2	 Middle	point	of	the	coracobrachial	insertion	 S016	

25	 1	 Distal	point	of	the	greater	tubercle	crest	 S017	

26	 1	 Distal	point	of	the	lesser	tubercle	crest	 S018	

27	 2	 Posterior	point	of	the	greater	tubercle	surface	 S019	

28	 2	 Lateral	point	of	the	greater	tubercle	surface	 S020	
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Landmark	 Type	 Description	 Label	

29	 2	 Proximal	point	of	the	greater	tubercle	surface	 S021	

30	 2	 Medial	point	of	the	greater	tubercle	surface	 S022	

31	 2	 Most	projected	point	of	the	anterior	surface	of	the	greater	
tubercle	

S023	

32	 2	 Proximal	anterior	point	where	intertubercular	groove	is	
between	both	tubercles	

S024	

33	 2	 Most	projecting	point	of	the	lateral	surface	of	the	lesser	
tubercle	

S025	

34	 2	 Proximal	point	of	the	lesser	tubercle	surface	 S026	

35	 2	 Anterior	point	of	the	lesser	tubercle	surface	 S027	

36	 2	 Distal	point	of	the	lesser	tubercle	surface	 S028	

37	 2	 Posterior	point	of	the	lesser	tubercle	surface	 S029	

38	 1	 Junction	point	between	the	humeral	head	perimeter	and	long	
head	of	the	biceps	brachii	

S030	

39	 2	 Proximal	point	of	the	humeral	head	perimeter	 S031	

40	 2	 Posterior	point	of	the	humeral	head	perimeter	 S032	

41	 2	 Distal	point	of	the	humeral	head	perimeter	 S033	

42	 2	 Anterior	point	of	the	humeral	head	perimeter	 S034	

	

	

In	 the	 next	 page	 it	 can	 be	 seen	 where	 these	 landmarks	 are	 exactly	 located	

through	a	3D	illustration	that	have	been	made	with	the	assistance	of	Landmark	Editor.	

	 	

	  



	 	 UNWARPING	HEATED	BONES	
	

	
	

61	

6.2 VISUAL GUIDE TO THE ANATOMICAL LANDMARKS OF THE HUMERUS 

	

	
Figure	6-1	-	All	landmarks	from	Appendix	6.1	represented	on	CEI/XXI	51	(unburnt	humerus	3D	mesh).	
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6.3 CALCULATION OF FULL PROCRUSTES DISTANCE 

	

library(Morpho)	#	We	call	this	package	since	it	has	an	useful	function				
that	calculates	the	complete	matrix	of	Full	Procrustes	distances	

dValue	<-	regdist(EM,	plot	=	T,	rho	=	"riemdist",	dist.mat.out	=	T)	#	EM	h
as	been	defined	earlier	in	the	Results	and	Discussion.	It’s	our	raw	values
	after	estimation.missing(),	but	before	gpagen()	is	applied.	

##	performing	Procrustes	Fit	in...		0.02876806	secs		
##	Operation	completed	in	0.0470929145812988	secs	

	

Figure	6-2	-	Comparison	of	Riemannian	distance	to	Euclidean	distance	in	the	Tangent	Space	

	

ProcrustesDistancesMatrix	<-	as.matrix(dValues$proc.dist)	

	
odd	<-	seq(1,	37,	2)	
even	<-	seq(2,	38,	2)	

	
index	<-	matrix(c(odd,	even),	ncol	=	2)	

	
FPD.change	<-	ProcrustesDistancesMatrix[index]	#	Our	matrix	of	Procrustes	
distances	has	all	the	possible	values.	We	have	indexed	and	take	the	only		
19	that	really	interest	us	(changes	between	unburnt	and	burnt	pairs).	

	
dF	<-	as.vector(matrix(c(rep(0,19),	FPD.change),	ncol	=	19,	byrow	=	T))	

#	Last	lines	of	code	keep	it	as	an	attachable	variable	to	our	tables.	E.g.
	if	I	desired	to	attach	it	to	SW,	I	just	need	to	do:	

SW$Df	<-	Df	
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6.4 QUANTITATIVE VALUES FOR WARPING AND SHRINKING 

	

library(knitr)	
dt	<-	read.csv(file	=	'./data/FromGM.csv',	header	=	TRUE)	
kable(dt)	

	

Table	4	-	Tabulated	values	of	Warping	and	Shrinking.	Full	Procrustes	distances	of	unburnt-to-burnt	were	labeled	
as	Warping,	and	the	logarithm	of	the	Centroid	Size	of	the	unburnt,	minus	that	of	the	burnt	was	labeled	as	Shrinking.	
Provided	here	 in	 case	 other	 researchers	pretend	 to	use	 these.	 In	 yellow	we	have	 a	 possible	 case	 of	 expansion	 (i.e.	
negative	shrinking),	however	CEI/XXI	29	is	one	of	the	individuals	with	virtually	mirrored	pre-burnt	bones,	meaning	
this	difference	in	size	can	be	just	due	to	developmental	factors	such	as	fluctuating	asymmetry.	

ID	 Age	 Sex	 Temperature	 Warping	 logCS.Before	 logCS.After	 Shrinking	

5	 73	 F	 900	 0.0643099	 6.658998	 6.545755	 0.113243	

8	 83	 F	 700	 0.0477035	 6.507733	 6.493301	 0.014432	

17	 85	 M	 900	 0.0378350	 6.625435	 6.503362	 0.122073	

24	 80	 F	 800	 0.0333180	 6.690679	 6.679033	 0.011646	

26	 90	 F	 900	 0.0392534	 6.573471	 6.530758	 0.042713	

29	 74	 M	 800	 0.0264085	 6.634388	 6.647413	 -0.013025	

32	 81	 F	 800	 0.0754552	 6.608055	 6.434462	 0.173593	

35	 75	 M	 900	 0.0375362	 6.602612	 6.432676	 0.169936	

43	 70	 M	 800	 0.0202990	 6.600072	 6.598050	 0.002022	

49	 85	 F	 850	 0.0591030	 6.632090	 6.504667	 0.127423	

50	 89	 F	 900	 0.0728359	 6.542426	 6.389417	 0.153009	

51	 70	 M	 900	 0.0709073	 6.680793	 6.532535	 0.148258	

53	 77	 F	 800	 0.0433352	 6.501725	 6.354815	 0.146910	

57	 85	 M	 900	 0.0571740	 6.588992	 6.458196	 0.130796	

64	 87	 M	 800	 0.0324908	 6.640177	 6.613855	 0.026322	

65	 81	 F	 900	 0.1038588	 6.544227	 6.385370	 0.158857	

79	 74	 M	 900	 0.0494068	 6.675157	 6.610388	 0.064769	

86	 78	 M	 1000	 0.0326523	 6.684702	 6.586534	 0.098168	

97	 88	 F	 1050	 0.0432747	 6.611635	 6.482052	 0.129583	

	

Notice	that	in	the	case	of	CEI/XXI	29,	32,	49,	50,	57,	64	and	65	we	couldn’t	use	the	

pre-burnt	3D	mesh,	as	it	has	been	explained	before,	and	instead	mirrored	versions	of	the	

antimeres	 were	 used.	 Therefore	 the	 values	 for	 these	 individuals	 are	 almost	

unquestionably	the	most	biased	in	the	sample	and	should	be	used	with	caution.	
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6.5 R PACKAGES THAT THE CODE DEPENDS ON 

	

Before	 running	 any	 code	 provided	 in	 this	 thesis,	 you	 might	 need	 to	 install	

packages	in	R	Studio	if	these	were	not	previously	in	your	computer,	to	do	so,	copy	paste	

the	following	code	into	your	console	and	run	it.	

	

#	First	we	make	sure	to	load	the	required	R	packages	and	its	dependencies:	
	
if	(!require('knitr')){	
				install.packages('knitr',	dependencies	=	TRUE)	
				library(knitr)	
}	

if	(!require('rmarkdown')){	
				install.packages('rmarkdown',	dependencies	=	TRUE)	
				library(knitr)	
}	

options(knitr.table.format	=	'markdown')	
	
if	(!require('geomorph')){	
				install.packages('geomorph',	dependencies	=	TRUE)	
				library(geomorph)	
}	

if	(!require('pastecs')){	
				install.packages('pastecs',	dependencies	=	TRUE)	
				library(pastecs)	
}	

if	(!require('car')){	
				install.packages('car',	dependencies	=	TRUE)	
				library(pastecs)	
}	

if	(!require('RWeka')){	
				install.packages('RWeka',	dependencies	=	TRUE)	
				library(RWeka)	
}	

source('./R/pts2array.R')	#	gets	a	function	written	in	collaboration	with	
David	Navega.	It	reads	all	.pts	files	inside	a	directory	into	R	and	saves	
them	as	an	array.	Used	to	obtain	data	from	landmark	Editor.	
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6.6 THIN-PLATE SPLINE DEFORMATIONS 

	

GP	<-	gridPar(pt.bg	=	'black',	pt.size	=	0.5,	n.col.cell	=	25)	#	defines	g
eneral	graphical	proprieties	of	the	following	plots.	
	

	
plotRefToTarget(Shapes[,,1],	Shapes[,,2],	gridPars	=	GP,	method	=	'TPS')	#
CEIXXI05F	

	

	

plotRefToTarget(Shapes[,,3],	Shapes[,,4],	gridPars	=	GP,	method	=	'TPS')	#
CEIXXI08F	

	

	

plotRefToTarget(Shapes[,,5],	Shapes[,,6],	gridPars	=	GP,	method	=	'TPS')	#
CEIXXI17M	

	

	

plotRefToTarget(Shapes[,,7],	Shapes[,,8],	gridPars	=	GP,	method	=	'TPS')	#
CEIXXI24F	
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plotRefToTarget(Shapes[,,9],	Shapes[,,10],	gridPars	=	GP,	method	=	'TPS')	
#CEIXXI26F	

	

	

plotRefToTarget(Shapes[,,11],	Shapes[,,12],	gridPars	=	GP,	method	=	'TPS')
	#CEIXXI29M	

	

	

plotRefToTarget(Shapes[,,13],	Shapes[,,14],	gridPars	=	GP,	method	=	'TPS')
	#CEIXXI32F	

	

	

plotRefToTarget(Shapes[,,15],	Shapes[,,16],	gridPars	=	GP,	method	=	'TPS')
	#CEIXXI35M	

	

	

plotRefToTarget(Shapes[,,17],	Shapes[,,18],	gridPars	=	GP,	method	=	'TPS')
	#CEIXXI43M	
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plotRefToTarget(Shapes[,,19],	Shapes[,,20],	gridPars	=	GP,	method	=	'TPS')
	#CEIXXI49F	

	

	

plotRefToTarget(Shapes[,,21],	Shapes[,,22],	gridPars	=	GP,	method	=	'TPS')
	#CEIXXI50F	

	

	

plotRefToTarget(Shapes[,,23],	Shapes[,,24],	gridPars	=	GP,	method	=	'TPS')
	#CEIXXI51M	

	

	

plotRefToTarget(Shapes[,,25],	Shapes[,,26],	gridPars	=	GP,	method	=	'TPS')
	#CEIXXI53F	

	

	

plotRefToTarget(Shapes[,,27],	Shapes[,,28],	gridPars	=	GP,	method	=	'TPS')
	#CEIXXI57M	
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plotRefToTarget(Shapes[,,29],	Shapes[,,30],	gridPars	=	GP,	method	=	'TPS')
	#CEIXXI64M	

	

	

plotRefToTarget(Shapes[,,31],	Shapes[,,32],	gridPars	=	GP,	method	=	'TPS')
	#CEIXXI65F	

	

	

plotRefToTarget(Shapes[,,33],	Shapes[,,34],	gridPars	=	GP,	method	=	'TPS')
	#CEIXXI79M	

	

	

plotRefToTarget(Shapes[,,35],	Shapes[,,36],	gridPars	=	GP,	method	=	'TPS')
	#CEIXXI86M	

	

	

plotRefToTarget(Shapes[,,37],	Shapes[,,38],	gridPars	=	GP,	method	=	'TPS')
	#CEIXXI97F	
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